Finding Semantic Bugs in File Systems with
an Extensible Fuzzing Framework

Seulbae Kim Meng Xu Sanidhya Kashyap Jungyeon Yoon Wen Xu Taesoo Kim
Georgia Institute of Technology

Abstract

File systems are too large to be bug free. Although hand-
written test suites have been widely used to stress file sys-
tems, they can hardly keep up with the rapid increase in file
system size and complexity, leading to new bugs being intro-
duced and reported regularly. These bugs come in various
flavors: simple buffer overflows to sophisticated semantic
bugs. Although bug-specific checkers exist, they generally
lack a way to explore file system states thoroughly. More im-
portantly, no turnkey solution exists that unifies the checking
effort of various aspects of a file system under one umbrella.

In this paper, we highlight the potential of applying fuzzing
to find not just memory errors but, in theory, any type of file
system bugs with an extensible fuzzing framework: HYDRA.
HyDRA provides building blocks for file system fuzzing, in-
cluding input mutators, feedback engines, a libOS-based ex-
ecutor, and a bug reproducer with test case minimization. As
a result, developers only need to focus on building the core
logic for finding bugs of their own interests. We showcase the
effectiveness of HyDra with four checkers that hunt crash
inconsistency, POSIX violations, logic assertion failures, and
memory errors. So far, HYDRA has discovered 91 new bugs
in Linux file systems, including one in a verified file system
(FSCQ), as well as four POSIX violations.

CCS Concepts -« Software and its engineering — Soft-
ware testing and debugging; File systems management;

Keywords File systems; semantic bugs; fuzzing;

ACM Reference Format:

Seulbae Kim Meng Xu Sanidhya Kashyap Jungyeon Yoon Wen
Xu Taesoo Kim . 2019. Finding Semantic Bugs in File Systems with
an Extensible Fuzzing Framework. In ACM SIGOPS 27th Symposium
on Operating Systems Principles (SOSP °19), October 27-30, 2019,
Huntsville, ON, Canada. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3341301.3359662

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP 19, October 27-30, 2019, Huntsville, ON, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-6873-5/19/10...$15.00
https://doi.org/10.1145/3341301.3359662

147

1 Introduction

Designing and maintaining file systems are complicated.
With the constant development for performance optimiza-
tions and new features, popular file systems have grown too
large to be bug-free. For example, ext4 [6] and Btrfs [44],
with 50K and 130K lines of code, respectively, witnessed
54 [26] and 113 [25] bugs reported in 2018 alone. A bug in a
file system can wreak havoc on the user, as it not only results
in reboots, deadlock, or corruption of the whole system [30],
but also poses severe security threats [32, 51, 53]. Thus, find-
ing and fixing bugs is a constant yet essential activity during
the entire life cycle of any file system.

However, manually eliminating every bug in file systems
with such massive codebases is challenging. For most file
systems, the best effort in getting assurance that no obvious
bugs are introduced is to rely on known regression tests (e.g.,
xfstests [42]), and tools (fsck [50]). However, these tools
cannot handle the diverse types of semantic bugs applicable
to file systems. For example, we found a case in Btrfs (Fig-
ure 1) that could cause irrecoverable data loss in the event
of power loss or system crashes, which can be disastrous for
data centers. Both xfstests and fsck miss this case. In fact,
only 5% of tests in xfstests attempt to stress such scenarios,
which is not sufficient. While specialized checkers can often
complement manually written cases in capturing semantic
bugs [33, 43], they face the common problem of generating
test cases that thoroughly explore the file system codebase.
More importantly, there is no turnkey solution that packs
different checkers seamlessly and fits into the continuous
integration process of file systems.

Recently, the decades-old software testing technique—
fuzzing [3, 41, 57]—has become the go-to approach, with
thousands of vulnerabilities in real-world software, includ-
ing critical ones [56], as its trophies. Without a doubt, file
systems can be fuzzed, and existing OS fuzzers [17, 23, 35, 46]
have demonstrated this viability with more than 50 bugs
found. Our recent file system-specific fuzzer further boosts
the bug count by 90 [51]. However, all prior works on file sys-
tem fuzzing have focused on memory safety bugs only, forgo-
ing the opportunity to find the dominant, diverse, and harder-
to-catch category of file system bugs: semantic bugs [30].

Semantic bugs in file systems come in various flavors,
including but not limited to violations of widely agreed prop-
erties (e.g., crash-safety), non-conformance to specifications
(e.g., POSIX standard), and incorrect assumptions made by

https://doi.org/10.1145/3341301.3359662
https://doi.org/10.1145/3341301.3359662
https://doi.org/10.1145/3341301.3359662
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#functional

developers. Therefore, different types of semantic bugs of-
ten require specialized checkers to find them. However, one
shared feature among semantic bugs is that when triggered,
they are unlikely to cause a kernel panic or hang, i.e., no
visible effects, at least in the short term. This contradicts
with memory errors (e.g., buffer overflow), which often lead
to an immediate kernel panic once triggered. In fact, the
property of silent failure hinders semantic bugs from being
discovered by existing memory safety-oriented fuzzers.

To bridge the gap between fuzzing and semantic bugs in
file systems, we build HYDRA, an extensible fuzzing frame-
work that is capable of discovering any type of semantic bug
(in theory) in various file systems with full automation. As a
framework, HYDRA provides building blocks for file system
fuzzing, including input mutators, feedback engines, a 1ibOS-
based executor, and a bug reproducer with test case mini-
mization. HYDRA gains the capability of checking specific
types of file system bugs by plugging in specialized checkers,
which can be independently developed and integrated in dif-
ferent forms, such as an out-of-band emulator (e.g., SibylFS
oracle [43]) or inlined reference monitors (e.g., Btrfs extent
tree reference verifier [1]). In this way, bug checker develop-
ers may now focus on the core logic for hunting bugs of their
own interest, while offloading file system state exploration
and bug processing to HYDRA.

In this paper, we demonstrate how HYDRA goes beyond
low-hanging memory errors to find three common types of
semantic bugs in file systems: crash inconsistency, POSIX
violations, and file system-specific logic bugs. These bugs
are found by plugging into HYDrA an in-house crash con-
sistency checker (see, §3.4), the SibylFS oracle [43], and the
existing file system-specific assertions inside the codebase.
As a result, HyDRrA found eight crash inconsistencies, four
POSIX violations, and 23 logic bugs in three popular and
heavily tested Linux file systems (ext4, Btrfs, and F2FS) and
even one crash consistency bug in FSCQ, which has been
proven to not have such bugs [8]. HYDRrA also finds 59 mem-
ory errors, while fuzzing several file systems.

Summary. This paper makes the following contributions:

e To tackle the dominant and diverse set of semantic
bugs in file systems, we propose to use fuzzing as a
one-stop solution that unifies existing and future bug
checkers under one umbrella.

e To show this, we build HYyprA!, a generic and exten-
sible file system fuzzing framework that provides the
supporting services for file system bug hunting so that
developers can focus on writing core logic in checking
bugs of their own interests.

e Leveraging in-house developed and externally avail-
able bug checkers, HyDRA has discovered 91 new bugs
of four different types in various file systems, out of

'HypRra is open-sourced at https://github.com/sslab-gatech/hydra

148

Bug Description (w/ bug checkers)

Data not properly persisted upon system crash or power loss

C1 Bug checker: SYMC3 (§3.4)*, eXplode [52], B3 [33]
' SV " Implementation not conforming to specifications (e.g., POSIX)
Bug checker: SibylFS [43]*, EnvyFS [19], Recon [11]
' LB " Using wrong algorithms or making invalid assumptions
Bug checker: Built-in checks (e.g., [1])*
N E " Out-of-bound accesses, use-after-free, uninitialized read, etc

Bug checker: KASan [13]*, KMSan [14], UBSan [45]

Table 1. A list of common types of file system bugs, their root
causes, the corresponding checkers that can be plugged into HyprA
to find these bugs. * indicates bug checkers HYDRA integrated with.

1 mkdir("./A");

2 syncQ;

3 fd = open("./A/x", O_CREAT | O_RDWR, 0666);
4 pwrite64(fd, buf, 4000, 4000); // size: 8000
5 fdatasync(£fd);

6 ftruncate(fd, 3000); // shrink size to 3000
7 rename("./A/x", "./y");

8

fsync(£d); // persist metadata (size: 3000)

(Crashing right after 8, the expected size of y was 3000, but found 8000)
Figure 1. A crash inconsistency bug in Btrfs that Hypra found:
£sync(fails to persist the size of a renamed inode. Data is cor-
rupted as a consequence.

which 60 bugs have been acknowledged and 46 bugs
have been fixed, which shows its worth.

2 Background

File systems are complex and ever-growing artifacts. A re-
cent study reveals that about 40% of patches in file system
development are fixes for bugs of various kinds, reflecting
both the diversity and severity of bugs in file systems [30].
In this section, we briefly explain four common types of
file system bugs, introduce state-of-the-art bug-finding and
elimination tools, and explain why fuzzing can be a turnkey
solution to all types of bugs by complementing existing tools.

2.1 A Broad Spectrum of File System Bugs

Table 1 summarizes four types of bugs that are often found
in mainstream file systems as well as related bug checkers
that are specially designed for each bug type.

Crash inconsistency (CI). A file system is crash consis-
tent if it always recovers to a correct state after a system
crash due to a power loss or a kernel panic. A correct state
means that the internal data structures are consistent and
information that was explicitly persisted before the crash is
neither lost nor corrupted. As a counter-example, Figure 1,
reported by HYDRA4, is a case that violates the crash con-
sistency property because the size of the renamed inode is
not persisted even after the completion of the explicit fsync
call. Such types of bugs lead to devastating consequences:
loss or corruption of persistent data and unmountable file
systems, as well as duplicate/unremovable files. Therefore,
crash consistency is a fundamental property relied upon by
data-sensitive applications, such as databases or servers. Un-
fortunately, there are very limited testing resources for this

1 mkdir("./A", 511);
2 unlink("./A"); // fails to unlink

(expected to get EPERM in POSIX, but got EISDIR)
Figure 2. Specification non-conformance in ext4: unlink () returns
an error code that is not compliant with POSIX, but it is acceptable
to the Linux specification [43].

1 char buf®[8192] = { 0, };

2 fd = open("A/B/x", O_CREAT | O_RDWR, 0666);
3 fsync(fd);

4 symlink("A/B/acl", "./z");

5 fallocate(fd, 1, 6588, 7065);

6 write(fd, buf®, 2325);

7 fdatasync(£fd);

8 link("A/B", "A/B/C/y");

9 rename("A/B/x", "A/B/C/y");

(failed to verify the extent tree refs)
Figure 3. Logic bug in Btrfs: a crafted image with a combination
of syscalls results in a corrupted file extent tree.

property apart from a handful of regression tests and the
recent work: eXplode [52], B3 [33].

Specification violation (SV). Specifications, such as POSIX
standards or Linux man pages, are bridges between file sys-
tem developers and users. Thus, a robust program must abide
by the agreed-on specifications, which essentially are con-
fined to what is allowed and not allowed out of a file op-
eration. Figure 2 is a POSIX violation reported by HYDRA,
as the allowed error code is EPERM, while the actual imple-
mentation returns EISDIR. Note that this does not violate
the Linux specifications. As in the example, if the file system
does not conform with the specifications, the robustness and
security of the software built and run on top of it can be criti-
cally affected (e.g., by improper error handling). Nonetheless,
similar to the crash inconsistency case, there are limited
testing tools for specification violation checking apart from
regression tests and the recent work, SibylFS [43].

Logic bug (LB). Unlike the other three bug types that can be
defined independently of any specific file system, logic bugs
are tightly coupled with the specific file system implementa-
tion. For example, the F2FS implementation requires its own
notion of rb-tree consistency [55], which is not commonly
asserted by other file systems. In other words, no pattern,
such as an inconsistent state, deviation from POSIX standard,
or simply crashes or hangs, exists to define a logic bug. How-
ever, similar to crash inconsistencies and POSIX violations,
most logic bugs simply fail silently. HyprA found the case
shown in Figure 3, which executes seemingly fine if the cor-
responding Btrfs extent check [1] is not enabled. However,
such logic bugs not only lead to undefined behavior but also
affect performance and reliability in the long run. File system
developers are often aware of potential logic bugs and have
placed extensive runtime assertions (e.g., invariant checks)
in the codebase to catch them. Unfortunately, such expensive
checks are never enabled in production while existing file
system test suites can rarely explore these corner states.
Memory errors (ME). Memory errors are common in file
systems. Due to their high security impact, e.g., enabling

149

chmod ("A/B/x", 3072);

unlink("A/B/h1ln"); // hln hardlinks to file x (image setup)
open("A/y", O_CREAT | O_RDWR, 0666);

rename("A/y", "A/B/x");

S

(a use-after-free error caught by KASan)

Figure 4. Memory error in ext4: chmod brings x to dcache; unlink
drops its i_nlink to 0 and moves it to the orphan list; rename frees
the inode but its pointer is still in the orphan list; when unmounting,
a use-after-free is detected.

remote code execution, several runtime checkers have been
proposed to detect memory errors. The most prominent ex-
amples are the sanitizer series, i.e., KASan [13], KMSan [14],
and UBSan [45], to address out-of-bound accesses and use-
after-free, uninitialized read, and undefined behaviors, re-
spectively. Despite the scrutiny from sanitizers coupled with
OS fuzzers, HypRa still finds a significant number of memory
errors. Figure 4 illustrates just an example of triggering a
use-after-free in the heavily checked ext4 file system with a
crafted image and as little as four syscalls.

Other types of bugs. File systems encounter even more
types of bugs. For example, one major category is concur-
rency bugs, such as sleeping in atomic context, data races,
deadlocks, and double-unlocks. Concurrency bugs have at-
tracted a fair amount of attention from both industry and the
research community. To discover such bugs, several dynamic
checkers have been recently proposed, ranging from kernel
built-in support (e.g., LOCKDEP [34]), to industrial tools (e.g.,
KTSan [16]), to research prototypes (e.g., SKI [10]). Although
our current demonstration focuses on the other four bug
types (Table 1), in theory, HYDRA can detect such bugs with
appropriate checkers, which we leave as future work. Some
file system bugs stem from disk-level failures [2, 9]. Although
these bugs can be systematically detected [39, 52, 54], this is
beyond the scope of this paper, as we assume that persistent
storage is reliable.

2.2 Toward Taming Bugs in File Systems

Past years have witnessed numerous efforts in hardening file
systems, ranging from comprehensive regression testing to
bug-specific checkers and formal verification. Unfortunately,
none of them have solved the problem entirely.

Regression tests. As the state of the practice, file sys-
tem developers often rely on regression tests (e.g., 1tp [47]
and xfstests [49]) and testing tools (e.g., £sck [50]) to gain
assurance of their implementation. Although this practice
keeps growing, these test suites are still ad-hoc collections
of tests that mostly focus on regression instead of systematic
checking for file system semantics such as crash consistency,
POSIX conformance, or file system-specific invariants. More-
over, handwritten test cases are far from sufficient to cover
huge input space in file system execution. In fact, all the bugs
Hypra found are missed in all of the test suites.

Bug-specific checkers. Recently developed bug-specific
checkers have been successful in tackling hard-to-catch se-
mantic bugs, such as B3 [33] in finding crash inconsistencies

1 mkdir("./A")

2 fd_foo = open("./A/foo", O_CREAT | O_RDWR, 0666);
3 link("./A/foo", "./A/foo_lnk");

4 syncQ;

5 fd_root = open(".", O_DIRECTORY, 0);

6 rename("./A/foo", "./y");

7 fsync(fd_root);

8 fd_x = open("./x", O_CREAT | O_RDWR, 0666);

9 fsync(fd_root);

10 pwrite64(fd_x, "aabbccdd", 8, 500); // size: 508
11 ftruncate(fd_x, 300); // shrink size to 300

12 unlink("./A/foo_lnk");

13 fd_y = open("./y", O_RDWR, 0);

14 fdatasync(fd_y);

15 fsync(fd_x); // persist metadata (size: 300)

Figure 5. Btrfs- fsync fails to persist the size of a truncated inode,
in the presence of metadata changes for another inode. After a
crash, Btrfs recovers file x to size 508, even though its truncated
size, 300, should have been persisted.

and SibylFS [43] in finding POSIX violations. In fact, their
effectiveness can be further boosted with a more efficient
test case generator, as shown in the example in Figure 5.

In Figure 5, all 15 operations collectively trigger a crash
consistency bug, i.e., even though files x and y have no ex-
plicit correlation to each other, fdatasync on y (line 14)
causes the metadata of x to be lost. B3 missed this bug due
to an assumption in their workload generator: “maximum
number of core operations in a workload is three,” which is es-
tablished under the observation that most crash consistency
bugs are triggered by three or fewer core file operations. B3
enumerates all test cases that have one (seq-1) or two (seq-2)
core operations, and a subset of seq-3 workloads. However,
in order for B3’s input generator to reach this bug, the bound
needs to be lifted to generate seq-5 test cases. This not only
contradicts B3’s design choice to reduce the space of possible
workloads, but also is infeasible, requiring a considerable
amount of time, i.e, more than a week if optimistic (§5.6).
Formal verification. Formally verified file systems have
been promising candidates to put the bug-hunting war to an
end given their attractive nature of being hassle-free by proof.
Prominent examples include the FSCQ-family [7, 8, 21] and
Yggdrasil [48] with different guarantees proved. Although
we did not initially expect HYDRA to find bugs in verified file
systems, to our surprise, HYDRA found two bugs in FSCQ
(one of them is reported by B3 [33] as well), which cause the
crash consistency property to be violated. There have also
been works regarding formally verifying user-level software
running on top of a file system [28], complementing the
efforts of the formally verified file systems.

Motivations. Surveying existing approaches on file system
bug finding reveals a common theme: the need for an effi-
cient and practical explorer that traverses file system states
in both breadth and depth, especially to reach corner cases
that cannot be covered by testcases contemplated by human.
With such an explorer, we could (1) harvest extensive invari-
ant checks in the codebase to detect file system-specific logic
bugs; (2) improve and complement existing bug detectors,
e.g., SibylFS; and more importantly, (3) focus on the core

150

bug hunting logic and totally decouple state exploration, as
shown by the improvements of our in-house crash consis-
tency checker, SymC3, over B3 (§5.6).

2.3 Fuzzing as a Turnkey Solution

Fuzzing is a software-testing method that repeatedly gen-
erates new inputs for target program to trigger bugs. It is
one of the most effective approaches in finding security bugs
in software [3, 4, 12, 38, 57]. Moreover, there are several
kernel-based fuzzers [17, 35, 46] that use mutated syscalls for
fuzzing. What makes fuzzing unique over other bug-finding
tools is its capability to generate interesting test cases with
little domain knowledge. Fuzzy input mutators, inspired by
genetic programming, are especially good at producing test
cases that explore corner cases in program execution paths,
which are otherwise difficult for humans to even contemplate.
The execution feedback further directs the fuzzing effort to-
ward both unexplored code paths and checker-desired states.
Both properties are valued by bug checkers, as they boost the
quality of test cases, which directly correlates to the number
of bugs that can be found. Furthermore, given that test case
generation often is not dependent on the core bug checking
logic, it can be a perfect target to be offloaded to fuzzing.

This inspires us to design an extensible fuzzing framework
that complements existing bug checkers with a fuzzing-based
file system states explorer. Further experience in fuzzing OS
kernels has shown unique challenges, such as reproducing
bugs and creating proof-of-concepts (PoC) of reasonable size.
Traditional OS fuzzers use virtualized instances to test file
system functionalities. However, to avoid the expensive cost
of rebooting a VM or reverting a snapshot, they re-use an
OS or file system instance across multiple runs, causing the
bugs found to carry the impact of thousands of syscalls and
often become irreproducible. We would like to address these
concerns in the framework as well.

3 Design

We now propose to build a comprehensive framework, HYDRA,
to complement existing and future bug checkers by providing
a set of commonly required components, all tailored to the
file system fuzzing. With proper checker plugins installed,
HyYDRA is capable of stressing various aspects of a file system.

3.1 Hybra Overview

Figure 6 shows the components and workflow of HyDra.
HyYDRA initiates fuzzing by selecting a seed from the seed
pool. A seed consists of a file system image and a sequence
of syscalls. The input mutator subsequently mutates either
the image or the syscalls or both and produces a batch of
test cases (§3.2). The test cases are sent to a library OS-based
executor that always starts in a clean-slate state, mounts
the given image, and executes the syscalls (§3.3). The visited
code paths are profiled into a bitmap by the coverage tracker

Input g3 3 s

Hydra) Output
Linux LibOS Lile] rnezitgfﬁ |][| Gme:, syscalls)
instrumented fs [—> L__| 1.1 open —4—>(img', syscalls)
.g., ext4 A=’ | write
= Fe ik) /> img’] [- Post bug
rash inconsistenc rocessin
(e.g., B3, SymCB)y§3'4 Checker VIIJVI — &
folati -base
e :g; VS‘I‘,;;‘}ES)“ c Ve;gge #executors replayer
Logic bug (@ , @) checker Testcase
(.8., F2FS_CHECK_FS) e signal minimization
Memory safet 1n lorer 83.7
o San)y Put state explore:
§3.5 1mg1 & img | syscall
Seed img poo mutator || mutator
(e.g., mkfs.ext4) _

(adopted from Janus) /

Figure 6. Overview of HYDRA’s architecture and workflow.

instrumented when compiling the target file system. Mean-
while, the bug-checking dispatcher invokes the necessary
checks, such as runtime assertions or an out-of-band emula-
tion (§3.4, §3.5). The dispatcher later collects the checker’s
feedback and merges with the coverage bitmap into a fuzzing
feedback report. If new coverage is reported or the checker
marks the test case as interesting, the test case is saved in
the seed pool and more exploration along this direction is
expected; otherwise, the test case is discarded (§3.6). If a new
bug is reported, the test case will be sent to a virtual machine
for replay and confirmation. HyDRA also performs syscall
sequence minimization on the test case to create a simplified
PoC for the ease of analyzing and fixing the bug (§3.7).

3.2 Input Mutator

To trigger a file system bug, one needs to (1) mount a cor-
rupted image or (2) execute a crafted sequence of syscalls, or
most likely, (3) combine both steps. To exploit the synergy
between mutating both file system images and syscall traces,
we incorporated our previous work, Janus [51], into HYDRA.

Image mutation. A file system image is highly structured
into user data chunks (e.g., file content) and a few manage-
ment structures called metadata. For mounting and a ma-
jority of file operations, only metadata is consumed, which
constitutes merely 1% of the image size, making a feasible tar-
get for random mutation. Using these facts, HYDRA scans the
image to locate all metadata blobs using a file system-specific
parser, and then it applies several common mutation strate-
gies [57] (e.g., bit flipping) to mutate them. If the metadata is
protected by checksums, HYDRA updates them accordingly.
Syscall mutation. The goal of syscall mutation is to gen-
erate diverse, complex, and, more importantly, image-aware
file operations. Similar to existing OS fuzzers [17, 23], HYDRA
mutates syscall sequences in two ways: (1) altering an ex-
isting syscall in the sequence by mutating its argument(s);
and (2) appending a new syscall (randomly chosen) to the
end of the sequence. HYDRA also leverages the semantics of
the syscall argument types to generate mostly valid syscalls,
(e.g., a certain range for size-like integers), to avoid being
rejected early by error checking code.

Exploiting the synergy. To fuzz image and syscalls to-
gether, HYDRA schedules the two mutators in order. Specifi-
cally, given a test case, HYDRA first tries the image mutator

151

for certain rounds. If no interesting test cases are reported,
HyDRA then invokes the syscall mutator to alter arguments in
existing syscalls. If still no interesting test cases are found af-
ter certain rounds, HYDRA eventually appends new syscalls.

Assisting checkers. On top of the generic strategy, HYyDRA
further assists bug checkers by providing checker-specific
strategies. For example, when generating test cases for crash
consistency testing, a valid fsync, or equivalent syscall is
appended to generate a persistence point.

3.3 Library OS Based Executor

The traditional OS fuzzers [17, 35, 46] reuse virtualized in-
stances for fuzzing several test cases. Because of the accu-
mulated non-deterministic OS states, this approach, unfortu-
nately, impedes the stable PoC generation, which developers
can reproduce and debug [15, 51]. Although rejuvenating
OS solves this issue, it can be as slow as a couple of sec-
onds. Hence, HYDRA uses a library OS-based executor, which
incurs negligible time (tens of milliseconds), forks a fresh
instance of the executor for every test case, while consuming
far fewer computing resources than VMs, enabling poten-
tially large-scale and distributed deployment of HYDRA.
The executor serves as (1) a fuzzing target, which mounts
the given image and executes the syscall trace while collect-
ing code coverage, and (2) a bridge to checkers (§3.4, §3.5),
which calls a checker, collects results, and then provides an-
other dimension of feedbacks to the feedback engine (§3.6).

3.4 Crash Consistency Checker (SymC3)

For various reasons (e.g., performance), most file systems
stage the effects of file and directory operations in memory
first and flush the changes to persistent, non-volatile stor-
age only when the time is right (e.g., when system load is
light). However, this optimization is not tolerable for appli-
cations that need to save critical data as quickly as possible.
As a result, persistence operations, namely sync, fsync, and
fdatasync, are used to force the in-memory states to reach
the disk immediately. As a guarantee provided by file sys-
tems, any information that is flushed should be consistent
even after a crash and recovery. Unfortunately, experience
has revealed cases where this guarantee is violated [18, 24].
In light of this, we develop SYMC3 to vet file systems
for crash consistency. Given an initial image and a syscall
trace, SYMC3 emulates the syscalls to derive a symbolic rep-
resentation of all allowed post-crash states according to the
file system-specific notion of crash consistency and checks
whether the recovered image falls into one of the states.

Syscall emulation. Table 2 presents a running example
of how SymC3 emulates syscalls using the bug shown in
Figure 1. Mimicking the inode data structure in Linux file
systems, SYMC3 also symbolically represents files and direc-
tories in c¢3_inodes with basic properties, e.g., names, type,

Operation Tree In-memory On-disk

0 [begin] . | i0.dents=[.] | i®.dents=[.]

1 mkdir . i0.dents=[., A] i0.dents=[.]

A [i]A il.dents=[.]

2 sync . i0.dents=[., A] i0.dents=[., A]

[i1]A il.dents=[.] il.dents=[.]

3 open . i0.dents=[., A] i0.dents=[., A]
A/x, [i]A il.dents=[., x] il.dents=[.]
O_CREAT | X i2.names=[x]

O_RDWR, i2.data=[0"]

0666 i2.size=[0]

4 purite . i0.dents=[., A] iQ.dents=[., A]
A/x, [i]A il.dents=[., x] il.dents=[.]
"a... X i2.names=[x]

4000, i2.data=[6% 0*Ka*K]

4000 i2.size=[8; 8000]

5 fdatasync . i0.dents=[., A] iQ.dents=[., A]
A/x [i1]A il.dents=[., x] il.dents=[.]

X i2.names=[x] -
i2.data=[0*K a*K] i2.data=[0*Kq*K]
i2.size=[8000] i2.size=[8000]

6 ftruncate . i®.dents=[., A] i®.dents=[., A]
A/x, [i]A il.dents=[., x] il.dents=[.]
3000 X i2.names=[x] -

i2.data=[6:KetK . 0°K] i2.data=[0'Kq*K]
i2.size=[8686; 3000] i2.size=[8000]

7 rename X i®.dents=[., A, y] i®.dents=[., A]
A/x, il.dents=[.5—%] il.dents=[.]

y A Y i2.names=[%y y] -
i2.data=[6"e™E . 0°K] i2.data=[0'Kqg'K]
i2.size=[86885 3000] i2.size=[8000]

8 fsync X i0.dents=[., A, y] i0.dents=[., A]
y il.dents=[.+—=x] il.dents=[.]

A Y i2.names=[%5 y] -
i2.data=[0K] i2.data=[0%K]

i2.size=[3000] i2.size=[3000]

Allowed post-crash states (POSIX):
S$1)i®: .,il: A (i2 becomes an orphan as i0 is not synced)

$2)i0: .,il: A, i2: x, data: 0°K, size: 3000

$3)i0: .,il: A,i2: y, data: 0°K, size: 3000
Allowed post-crash states (Btrfs):

$3)i®: .,il: A/ i2: y, data: 0K, size: 3000

Table 2. Symbolic representation of the c¢3_inode tree, and the
emulated in-memory and on-disk states of c3_inodes during the
execution of SYMC3 on the test case in Figure 1. Boxed region
represents the snapshots taken and strikethrough text maintains
the history of data and metadata changes before synced.

size, link count, attributes, etc., as well as type-specific prop-
erties such as directory entries (if directory), link target (if
symbolic link), and data (if regular file). However, different
from the Linux inode, which only keeps the current state,
the c3_inode also records the history of changes in the prop-
erties before the changes are committed to disk.

For syscalls that create an inode, such as mkdir (line 1)
and open with O_CREAT (line 3), SYMC3 creates a c¢3_inode
accordingly and initializes it with proper properties, as in
the case of i1 and i2 in the example. SYMC3 also creates a
snapshot of the c3_inode tree, indicating that . /A and ./A/x
might exist on disk if the crash occurs after the execution.
Similarly, for syscalls that manipulate the tree structure, such
as rename (line 7), a snapshot is created to reflect the fact
that the ./y might exist on disk if the effect of rename has
reached the disk. However, no snapshot allows the existence

152

of both ./A/x and ./y. Furthermore, regardless of whether
x or y is persisted, it should map to i2.

According to the POSIX standard, among syscalls that
persist inode, sync and fsync commit the entire c3_inode,
i.e., both data and metadata, to disk (line 2 and 8, respec-
tively) while fdatasync only commits data and those meta-
data that are related to data (e.g., size, checksum) to disk (line
5). Other syscalls (line 4, 6) modify either data or metadata
of the c3_inode, and the changes are piled and versioned
in memory until reaching a persistence point. For example,
after fdatasync in line 5, changes in the i2 data and size are
committed to disk and their prior versions (i.e., empty file
with zero size) can be safely discarded, as from now on the
disk is no longer allowed to recover to the previous state. In
other words, SYMC3 keeps track of the change history for
each c3_inode property until they are persisted.

Enumerating crash states. Atany stage, SyMC3 is capable
of generating the set of allowed post-crash states by enu-
merating the snapshots along with on-disk and in-memory
c3_inodes. For each c3_inode tree snapshot, SYmC3 checks
whether it meets the requirement that if a c3_inode is known
to be persisted, (i.e., directory entry exists on disk), the snap-
shot must contain it. With this constraint, SYmMC3 rules out
invalid snapshots. In Table 2, among the four snapshots, the
first tree, which has i0 only, is dropped because of the con-
straint: i® and i1 are known to be persisted, but i1 is not in
the snapshot. The other three do not violate any constraint.

With the valid sets of snapshots, SymC3 further multi-
plexes them with the allowed states per each ¢3_inode prop-
erty to generate all crash-safe states. In the running example,
all c3_inodes in each valid snapshot are persisted, leading to
one possible state per snapshot and making the total allowed
states to be three. If SYmC3 finds that the recovered image
does not fall into any of the allowed states, a bug is reported.
SYMC3 reported the running case because after the crash,
Btrfs recovered the image to the state where the size of file
y was 8000, which is not one of the allowed states.

This test case is particularly interesting in that when run-
ning the case on the patched kernel, Btrfs and F2FS yield
different crash states. Btrfs recovers to 83, while F2FS recov-
ers to $2. Since SYMC3 considers both as legal states, neither
is considered a bug. This is in contrast to the design choice
made by B3 where it only considers the final snapshot before
the crash, namely S3, as a correct oracle state, which is in
fact only a subset of all possible states. As further supported
by our experiment in §5.6, this could be the main reason B3
incurs a high false positive rate.

Extending consistency semantics. POSIX specification
itself is “loose,” leaving much room for implementation-
specific behaviors in handling crash consistency. As a rem-
edy, HYDRrRA implements various file system-specific consis-
tency semantics to conservatively handle stronger crash
guarantees. For example, although not mandated by POSIX,

Btrfs persists the directory entry as well as metadata when
an inode is fsynced. This is why the renamed file y is per-
sisted without explicitly f£syncing its parent directory in the
example case. In addition, ext4, Btrfs, and F2FS resolve the
symbolic path to the original file/directory if it is provided
as an argument, although the POSIX entry for link states
that the behavior is implementation-defined.

Apart from the extensions, another aspect to consider is
that not all file systems implement POSIX fully. For exam-
ple, the FSCQ’s specification regarding unlink deviates from
the POSIX standard because FSCQ relies on Filesystem in
Userspace (FUSE) driver; it does not allow unlink to be con-
ducted on an open file, even though POSIX states that “if
one or more processes have the file open when the last link is
removed, the link shall be removed before unlink() returns.”
Handling such deviation in SyMC3 is not difficult, because
we only need to enforce these additional rules on top of the
generic file system layer that is emulated. These extensions
require only a few lines of changes (Table 3).

3.5 Other Checker Plugins

Besides the home-grown consistency checker SymC3, we
further show that three independently developed checkers —
each of which targets a different type of file system bug and is
not originally designed for fuzzing — can be seamlessly plug-
and-played in HyDpra with little or no engineering effort.

POSIX conformance. We integrate SibylFS [43] in HYDRA
to find POSIX violations in file systems. SibylFS formalizes
the range of POSIX-allowed behaviors of a file system for any
sequence of syscalls within its scope. Based on these formal-
izations, SibylFS serves as an oracle to decide whether an ob-
served trace is allowed by the POSIX specification given the
initial image and the sequence of syscalls. To bridge HyprA
with SibylFS, we run the SibylFS oracle in a standalone pro-
cess and connect it with the bug-checking dispatcher via a
dedicated channel. Whenever the executor receives a test
case, the dispatcher forwards the test case to the SibylFS pro-
cess, which handles test case unpacking and oracle checking
and eventually replies with a signal on whether it detects
any violations of the POSIX standard.

Logic checking. As noted in §2.1, most logic bugs cause
silent failures and finding such bugs often requires hooking
the file system at runtime with domain-specific invariant
checks. Although file system developers are often aware
of this issue and have placed precautionary checks in the
codebase, the checks are rarely enabled for performance rea-
sons. This makes them a perfect match for fuzzing, as Hypra
aims to find ways to trigger these assertions that are other-
wise missed in normal workloads. Most developer-annotated
checks can be conveniently integrated with HYDRA by speci-
fying the corresponding CONFIG_* options when compiling
the target file system, e.g., CONFIG_BTRFS_FS_REF_VERIFY for
the Btrfs extent tree reference verifier [1]. The dispatcher

153

monitors any warnings or errors raised from these checks
and accordingly marks the test case as interesting.

Memory safety. Although not the focus of HYDRA, to be
complete, HYDRA also looks for memory errors leveraging
the Kernel Address Sanitizer (KASan) [13], especially out-
of-bound and use-after-free bugs in file system implemen-
tations. Whenever KASan reports an error at runtime, the
bug-checking dispatcher of HYDRA crashes the kernel exe-
cution and marks the input test case as interesting.

3.6 Feedback Engine

In HYDRA, a test case execution is summarized in the feed-
back report, which essentially measures the “novelty” of a
test case and decides whether it deserves further mutation.
HyYDRA considers two types of feedback:

Branch coverage. Like traditional fuzzers, for HYDRA, a
file system is represented as a control-flow graph where
vertices are basic blocks and edges are branches from one
basic block to another. While executing a test case, HYDRA
keeps track of the set of edges visited, and the novelty of
the test case is measured by the number of new branches
and unique combination of branches triggered. By default,
branch coverage forms the primary coverage metric, which
HyDRA leverages to find bugs of any type.

Checker-defined signal. As a generic fuzzing framework,
HypraA’s feedback engine additionally allows each checker
to register its own feedback formats. In its simplest form,
as used by all checkers in HYDRA, the feedback is just a
boolean variable indicating whether or not this test case
triggers a buggy condition (i.e., 1 for bug, 0 otherwise). For a
more sophisticated example, a checker that tries to uncover
specification violations may provide a feedback format that
tracks the number of rules that have already been asserted by
prior runs in the given specification. This will penalize input
mutators for generating test cases that cover the asserted
parts and will eventually drive HYDRA towards the yet-to-
be-tested part of the specification.

3.7 Post Bug Processing

Most fuzzers stop at finding an erroneous state without wor-
rying about reproducibility and the size of the test case. The
assumption is that debug information (e.g., KASan reports or
stack traces) can help locate the bug. This assumption might
be valid for small applications. However, for file systems, in
most cases, the debug information reveals only the direct
symptom instead of the root cause, and even the file system
maintainers need to spend a day or two navigating through
hundreds of syscalls to pinpoint the root cause, as shown
in the piled-up bugs in syzbot [15]. In light of this, HyDrRA
takes the extra steps to reproduce each found bug in a VM
with realistic kernel and file system settings and minimize
the corresponding test case into a suitable-sized PoC.

VM-based replay. A library OS running in user space typ-
ically has its own implementation of scheduling, memory
management, and interrupt handling, which are largely dif-
ferent from those of the original Linux kernel. For example,
some library OSes (e.g., Linux Kernel Library [40]) only sup-
port single threading, and the execution order of the kernel
code in such a library OS differs from that of a machine that
supports multi-threading. Therefore, HYDRA relies on real
VM instances to verify that every found bug does indeed
affect the end users of the tested file system. When a bug is
found, HYDRA replays the corresponding test case on a fresh
VM instance, which is installed with the same kernel and
file system used by Hypra’s 1libOS-based executor. The bug
is confirmed when the replays result in the same runtime
violations captured by HYDRA during the fuzzing process.

Test case minimizer. For file system developers, an ideal
PoC should be minimal, i.e., the syscall sequence should
only include the necessary operations that trigger the bug.
Unfortunately, the raw bug-triggering test cases generated by
HyDRA are far from minimal, with excessive mutations on the
syscall sequence that have no effect in bug manifestation. To
reduce a raw PoC into a minimal PoC, HYDRA uses the Delta
Debugging technique [58]. To be specific, with the given
syscall sequence, HYDRA tries to remove one syscall and re-
test until a minimal syscall trace is reached, i.e., removing
any one in the trace voids the bug. Although this approach is
still sub-optimal compared with synthesizing test cases from
scratch, it is highly effective in practice and can be further
improved by advanced syscall distillation techniques [20, 36].

4 Implementation

Hypra adopts the basic fuzzing infrastructure from AFL
2.52b [51, 57], including the fork server, code coverage bitmap,
and test case scheduling, but replaces a few key components,
including an input explorer that mutates both file system
images and syscalls. We leverage the file system-specific util-
ities (e.g., mkfs and fsck) available in development packages
(e.g., e2fsprogs) to identify the metadata chunks of each file
system. We also use these utilities to inspect the image after
mutation: ie., to iterate files and directories on the image
and feed information for the syscall mutator to generate
image-aware syscall sequences (see, Table 3).

We choose the Linux Kernel Library (LKL) [40] as the
library OS for the executor. The official LKL is based on Linux
kernel v4.16 and we ported it to v5.0. When compiling LKL,
we restrict instrumentation (e.g., code coverage tracking for
AFL) to the tested file system only; therefore, we can focus
only on the exploration of the file system instead of on the
whole kernel. LKL is statically linked into the executor, which
takes the input from the mutator, mounts the image, and
runs the syscalls by calling LKL functions.

154

Component LoC Language
Hypra Framework

Input mutators 8,507 C++/Python

LKL-based executor 2,190 C++

Glues to checkers 233 C/C++/Python

Feedback engine (as AFL changes) 497 C

Bug post-processing 274 Python/Bash
Crash Consistency Checker (SymC3)

Syscall emulator & violation checker 3,349 Python

ext4 extension 3 Python

F2FS extension 3 Python

Btrfs extension 35 Python

FSCQ extension 4 Python

Table 3. Implementation complexity of HYDRA and SymC3.

Despite the large shared codebase on syscall emulation and
violation checker, SYMC3 is extremely flexible in incorporat-
ing customized notions of crash consistency or non-POSIX
compliant operations in various file systems. For example,
the crash consistency property in Btrfs requires it to persist
the directory entry as well as metadata when an inode is
fsync-ed. This deviation from the standard behavior can be
modeled in as small as 35 LoC (see, Table 3).

5 Evaluation

We evaluate HYDRA by fuzzing popular, heavily tested (even
formally verified) Linux file systems. In particular, we show
the effectiveness of HypRA with the number of new bugs dis-
covered by various checkers in HYDRA (§5.1). The effective-
ness can be explained from three aspects: (1) a high fuzzing
speed allows HYDRA to explore file system states quickly
(§5.2); (2) the dual-aspect input mutation allows HYDRA to
explore more execution paths than both existing OS fuzzers
and specialized bug checkers (§5.3); and (3) the addition of
checker feedbacks allows HYDRa to further lean its fuzzing
effort towards checker-defined states besides greedy path
exploration (§5.4). Beyond hitting more bugs, we further
evaluate HYDRA’s performance in bug reproducibility and
test case minimization (§5.5). Additional evaluations on the
in-house developed crash consistency checker are performed
to support how it fares against prior works (§5.6).

Experimental setup. We run HYDRA on a 2-socket, 24-
core machine running Ubuntu 16.04 with Intel Xeon E5-2670
and 256GB RAM. We tested ext4, Btrfs, and F2FS in Linux
kernel v5.0, and also FSCQ (sosp17 branch). We also tested
XFS, GFS2, HFS+, ReiserFS, and VFAT, but found only memory-
safety bugs. Unless otherwise stated, we use a minimal seed
disk image that contains seven different types of files and di-
rectories (e.g., hard/soft links, FIFO, xattr, etc.) in all fuzzing
runs. We compare HYyDRA with the latest version of two
state-of-the-art OS fuzzers, Syzkaller and kAFL. Syzkaller
runs with the KVM instances, each of which has two cores
and 2GB RAM.

5.1 Bug Hunting in Popular File Systems

Across intermittent runs during a 10-month period of devel-
opment, HYDRA discovered 91 new bugs in total, of which 60

Crash Logic Spec. Memory
FS Inconsistency Bug Violation Error
#A/#R/#F T #A/#R/#F T #R T #A/#R/#F T
ext4 1/1/0 4w 0/0/0 1w 1 1w 3/4/3 1w
Btrfs 1/4/1 8w 7/7/3 1w 2 1w 21/21/12 1w
F2FS 2/3% /2" 4w 16/16/16 1w 1 1w 8/8/8 1w
FSCQ 1/1/1 1w -/ -/ - - - /-
Total 5/9%/4* 17w 23/23/19 3w 4 3w 32/33/23 3w
VM-replay 9/9 (100%) 22/23 (96%) 4/4 (100%) 30/33 (91%)
A: Acknowledged, R:Reported, F:Fixed, T: Tested time (in weeks)

Table 4. Hypra found 91 new bugs (69 in the four file systems
listed above and 26 in others) along with four POSIX violations.
Hypra successfully reproduced all cases except four on VM (see,
§5.5). As the bugs in other file systems are memory errors while
the focus of HYDRA is semantic bugs, we omit them in this table.
We acknowledge that the found POSIX violations are known to
the Linux communities, so they remain unfixed. *One of the crash
consistency bugs we found in F2FS was fixed before we reported.

20
15
10

Memory errors E=xX1
Semantic bugs E=XXY

R
R
R

#Bugs

X
1 2 3 4 5 6 7 8 9
#Syscalls

10 10+ mount-only

Figure 7. The number of syscalls required to trigger each file system
bug found by HYDRA after minimization.

have been confirmed and 46 bugs fixed (see, Table 4). Note
that we also found four POSIX violations. The results show
that as a fuzzer tailored to file systems, HYDRA, together with
the checker plugins, helps us discover and patch a diverse
set of bugs in various file systems. More importantly, among
all bugs found, 32 are semantic bugs that do not cause kernel
panics when triggered, and hence, cannot be found by prior
OS fuzzers. This sheds light on how to stress not just memory
errors but also the semantic parts in file systems by integrat-
ing specialized checkers into the HYDRA fuzzing framework.
Note that even though the memory bugs found seem to out-
number the semantic bugs, it does not impair our claim that
HyDRA is a generic and effective framework applicable to
many bug types, including hard-too-detect semantic bugs
(e.g., the crash inconsistency found in verifed FSCQ). Besides,
KASan is another checker plugged into HYDRA, supporting
the manifestation of memory bugs.

To see how deeply HypraA explores the input spaces of a
file system, we further measure the minimal trace of syscalls
(obtained from the test case minimizer) required to trigger
these bugs. The result is shown in Figure 7, and we make
several observations:

Dual-aspect input mutation. Seventy-five percent of found
bugs require both mounting a crafted file system image and
subsequently executing a dedicated sequence of syscalls to
trigger. This shows the importance of exploiting the synergy
of two types of mutations. The rest of the bugs (7 logic bugs
and 10 memory errors) can be triggered by merely mounting

155

Crash consistency

(11.4 exec/sec)

POSIX conformance
4.5 exec/sec)

L Logic invariants
| (102.8 exec/sec)

Memory safety

40 - (98.4 exec/sec)

20 -

)) N Y A

0 0.01 0.1 1 10 100
Checker overhead (ms)

L I

1000 10000

Throughput (exec/sec)

Figure 8. Performance of HYDRA’s state exploration with checkers
exhibiting different overheads, indicating the expected throughput
when a developer integrates a custom checker with HYDrA.

a corrupted image, which shows the importance of image
mutations.

Bug complexity. A file system bug can be triggered by as
little as one syscall’ or as many as 32 syscalls after mini-
mization. Although there is no rule-of-thumb for how many
syscalls are enough to reach a file system bug of a specific
type, we do observe that semantic bugs tend to require a
longer sequence of syscalls to be triggered compared with
memory errors. In fact, among all the bugs that require file
operations to manifest, 57% of memory errors can be trig-
gered with just one or two syscalls, while the ratio is only
21% for semantic bugs. In contrast, nearly 50% of semantic
bugs require at least five syscalls to reach. Therefore, it might
not always be valid to assume that small workloads are suf-
ficient to reveal file system bugs of all types. Testing a file
system with a fixed length of random syscalls (e.g., B3 seq-3)
might miss many bugs to be found.

5.2 Fuzzing Speed

The overall throughput of HyprA highly depends on the
speed of a companion checker; intuitively, a more expensive
checker implies lower throughput (Figure 8). For example,
checking POSIX violation is the most expensive, as each test
case needs to be piped to a separate process that hosts an
OCaml runtime and re-emulates the syscalls with extensive
specification checking. On the other hand, the logic checker
places accounting and assertion hooks inlined with the code,
allowing HYDRA to explore the input space at full speed.

It is worth noting that the performance of a checker is not
a limitation, as HYDRA is not responsible for reducing the
checking overhead. Rather, we consider that the amount of
analysis (and hence the overhead) is the price we have to pay
to find bugs of a particular type. The theoretical maximum is
122 exec/sec, measured by merely starting and stopping the
LKL instance. The difference between this and the Hypra
baseline (104 exec/sec) reflects the overhead of the generic
fuzzing infrastructure, including input mutations and book-
keeping (e.g., updating the AFL coverage bitmaps).

For comparison, a VM-based approach takes at least 1.4 sec
(0.7 exec/sec) to achieve the same effect, i.e., a clean-slate ker-
nel and file system for every test case, which is 100x slower
than our 1ibOS-based executor. In addition, although the

A bug in ext4 can be triggered with only one

removexattr("A/B/acl", "system.posix_acl_access").

syscall:

throughput might be low for expensive checkers, this may
be compensated by paralleling HYDRA, similar to distributed
fuzzers like syzbot [15].

5.3 Code Coverage

Besides throughput, code coverage, especially the coverage
when fuzzing is toward saturation, is another important
factor that decides the effectiveness of fuzzing. Intuitively,
the more execution paths covered, the more thoroughly a
file system is tested. HYDRA achieves higher code coverage
than not only existing OS fuzzers but also bug checkers that
synthesize test suites with their own algorithms.

Comparison with existing OS fuzzers. We perform con-
trolled experiments on HYDRA and state-of-the-art OS fuzzers
Syzkaller and KAFL by 1) mutating file system images only
and fuzzing with the same sequence of syscalls, 2) mutating
syscall sequences only and fuzzing with the same seed image,
and 3) mutating both. The results are shown in Figure 9. At
the end of the 12-hour period, HYDRA outperforms Syzkaller
by 1.55x%, 1.52x, and 1.45x for ext4, Btrfs, and F2FS, respec-
tively, and outperforms kAFL by 8.74x, 6.31x, and 6.47x.

By mutating image metadata only, upon saturation, HYDRA;
explores at least 3.36x code paths in all tested file systems
compared with both Syzkaller; and kAFL. This is because
HypRra identifies metadata chunks in an image with file
system-specific parsers, while Syzkaller; mutates the non-
zero parts only and kAFL mutates the first 2K bytes only.
Both Syzkaller; and kAFL may miss important metadata
chunks as well as include non-essential user data. For syscall
mutation, HYDRA; is still slightly better than Syzkaller; (at
most 1.12x). The improvements mainly come from generat-
ing image-aware workloads.

On top of that, HYDRA achieves higher code coverage than
both HyDprAg and HyDRa4;, which proves the importance of
dual-aspect input mutation in file system fuzzing. Moreover,
HyDpRrA also outperforms Syzkaller on all tested file systems.
Having more effective mutators is one reason. More impor-
tantly, HyprA wisely schedules two mutators (see §3.2) while
Syzkaller does not prioritize either of them, leading to even
worse performance than Syzkaller; in all cases.
Comparison with synthesized test suites. To support
the claim that bug checkers can offload the path exploration
component to HyprA, HYDRA should be additionally com-
pared with test synthesizers in these checkers, as these syn-
thesizers share the same goal with fuzzing: exploring as many
program states as possible. To this end, we check whether
the test cases generated by HYDRA yield more code coverage
than those synthesized by individual bug checkers recently
proposed; the results are shown in Figure 10.

B3 seq-2 test suite. Even though we restrict the syscalls to
be the same set as supported by B3, HyDrA yields more cov-
erage than B3’s seq-2 test cases. This is because B3 selects
arguments from a pre-defined small set when generating

156

ES Crash Inconsistency Logic Bug Spec. Violation
W/ Sig No Sig W/Sig NoSig W/Sig No Sig
ext4 0 0 0 0 1 1
Btrfs 4 2 5 1 2 2
F2FS 2 1 8 2 1 1
Total 6 3 13 3 4 4

W7 Sig: With Signal, No Sig: No signal
Table 5. Effectiveness of checker feedbacks. The table shows how
many unique bugs are found with checker feedback and by replay-
ing the test cases generated without checker feedback.

test cases. For example, truncate’s length is either 0 or 2500,
and only two directories and two files are used as path argu-
ments. On the other hand, HYDRA mutates these arguments,
discovering more code paths.

SibylFS test suite. Similarly, HYDRA yields more cover-
age than the test suite synthetized by SibylFS even when
fuzzing is restricted to the same set of syscalls. One rea-
son is that SibylFS heavily relies on the manual enumera-
tion of equivalence classes, which can be incomplete. For
example, SibylFS seems to treat read(fd, buf, 100) and
read(fd, buf, 10000) as equivalent, because both reads
from the same file descriptor, while they may trigger differ-
ent code paths as the length crosses the page and block size.
Another reason is that SibylFS focuses more on enumerating
combinations of arguments for a single syscall, generating
less diverse syscall sequences.

5.4 Checker Feedback

For semantic bug checkers, besides greedy exploration of
code paths, what is equally important if not more valued
is the triggering of their “favored” states, i.e., the states in
which the checking actually occurs and errors are likely to be
reported. For example, for checkers that enforce developer-
annotated invariants, what developers hope for is exploring
not only more paths in the file system, but also more paths
that go through the annotated checks. HYDRA supports this
by adding feedback from the checker to the input mutator.
The feedback can be as simple as a boolean variable indicat-
ing whether or not the checker favors this test case, which
is the case in SymC3, which sends 1 when it finds a crash
inconsistency. Intuitively, by sending positive feedback, the
checker expresses its intention to see more inputs like this.

We show this with a controlled experiment. We first run
Hybpra with checker feedback for 12 hours and collect the
number of test cases flagged as buggy by the checker. We
then run Hypra without checker feedback for 12 hours® and
collect all the test cases AFL saved in the seed pool. With
only branch coverage feedback, the seed cases represent the
situation where the fuzzing effort is not directed toward any
particular states. The last step is to re-run these seed cases
with checker enabled again and see how many unique bugs
are found. The results are shown in Table 5.

3 In this run, Hypra still invokes the checker, but regardless of whether
a bug is reported, the feedback is ignored. This allows the execution to
proceed given semantic bugs are unlikely to cause visible impact.

10k ext4 S lgﬁ Btrfs 10k F2FS
® 000060 |

En 8k :.;xxk*"‘x KD X KA X KHHX }gﬁ Q_Qmmmﬁﬁmﬂg 8k gggggmeWR.Q HYDRA - ©—
] CHHEHEHEEHEHEE S E1E1 Bl EIE1 El EIE I E B HEEEHEEEEEEEE Gexxx HYDRA; ==%-=-
g ok 10k [MEBEEERECCCCRCCREERNEREY o« XS EcEressssssssssssssmnn HyYDRA. - 3 -
3 X 8k s)
2 4k ok 4k Syzkallers —m=
S ok 4k D bkt ke L SDIN Syzkaller ——t—
s D ettt otk Syzkaller; -

ok P ‘ ‘ ‘ ‘ | ookg— | ‘ ‘ ‘ w w KAFL ——

12 0 2 4 6 8 12 0 2 4 6 8

Time (hours) Time (hours) Time (hours)
Figure 9. Code coverage for 12 hours of fuzz testing with kAFL, Syzkaller, HyDRrA and their variants (i for image-only and s for syscall-only

mutation). It indicates that HYDRA aggressively explores the input space that both kAFL and Syzkaller could not reach, and combining both
image and input mutators exhibit a synergistic effect in exploring different parts of the input space.

10 10 12

8k ext4 12k Btrfs 6k F2FS
o 10k xx FCIDEIE K IDEIE I K AH=06 2 K KD XK XA X 2 3¢ XX PIEIE K HKIEIE I K AHK-DE K KD X
2 6k prxmmenxmmex s - Lo EERRREEREEEEOO000000 | nQRARRTRIRE IR
S L D R R D CHEHEHEHEY : v
S 4k 6k - HyprA w/ SYMC3 - -x
S ak 2k | B3 e
T ookE ol : Hypra w/ SibylFS - -1
£ 3 'y 3 ; _
Ok | | | | | | Ok | | | | | | Ok | | | | | | SlbylFS

0

2 4 6 8

Time (hours)

10

12

0

2 4 6

12 0 2 4 6 8 10 12

Time (hours)

Time (hours)

Figure 10. Code coverage for 12 hours of checking crash consistency bugs by using a static mutator, B3, and our feedback-driven fuzzer,
Hybpra with SYMC3, as well as checking specfication violation using SibylFS’s test suite versus HyDRA’s dynamically generated test cases. In
finding both bug types, not only does HYDRA visit more code paths but also keeps discovering new paths throughput execution—as the
exploration quickly saturates, finding just one new path for a few hours of executions is a significant indicator. Note that B3’s seq-2 test
cases for ext4 complete in 8 hours (the leftmost graph), and SibylFS’s test suite completes within an hour (the straight red lines).

On average, disabling the feedback means that we will # FS #Syscall (min.) B3 sequence

miss 57% of the semantic bugs that could be Caught with the 1 extd 36— 3(91.7%) seq-1* (requires support for chmod)

: PR _ : 2 Btrfs 164—12(92.7%) seq-5
che.cker feedbzlick. The explanat.lo.n lies in Fhe seed-selection 3 Btrfe 1511 6(96.0% seq1* (opens and persists additional file)
policy. In particular, seeds receiving positive feedback from 4 Btrfs 44— 6(864%) seq-3* (mix of data and metadata ops)
the checker are prioritized for more mutations. The rationale 5 Burfs 40— 8(800%) seqd o
K . 6 F2FS 233— 6(97.4%) seq-2* (writes on overlapping regions)
is that a test case favored by the checker will likely have 7 F2FS 20— 3(85.0%) seq-1* (requires support for chmod)
some erroneous states accumulated. Therefore, by exploring 8 F2FS 29— B(724%) seq-3" (opens and persists additional file)

9 FSCQ 36— 7 (80.6%) seq-2

more along that direction, HYDRA has a higher chance to
trigger more bugs. However, this effect does not show up for
POSIX violations, as these bugs are too shallow to be missed.

5.5 HybpRra Framework Services

Hybra provides bug processing as a framework service to
all bug checkers in an attempt to address the challenge in
traditional OS fuzzing: irreproducible bugs due to the accu-
mulated effects of thousands of syscalls. We measure how
successfully HYDRA achieves its goal from two aspects:

VM-replay for bugs found. Whenever the bug checker
flags a test case, HYDRA replays the test case on a fresh VM
instance running with the same kernel and file system HyDrA
uses for fuzzing. We manually check whether the VM replays
the same behavior as shown in the LKL executor, i.e., (1)
being in an inconsistent state (for crash inconsistency), (2)
deviating from standards (for POSIX violations), (3) failing
at assertions (for logic bugs), or (4) panicking with the same
KASan or BUG() location (for memory errors). The results
are summarized in the last row of Table 4.

Only four bugs are not always replayable (although they
are acknowledged by the developers), and the reason is that
LKL and the kernel in the VM use different schedulers. As
a result, these timing-critical bugs do not always manifest
in the VM. For instance, an ext4 memory error is caused by
the JBD2 thread running in the background. Since LKL is a

157

Table 6. The number of system calls used to trigger new bugs,
before and after minimization. Even after minimization, all test
cases, except FSCQ bug, cannot be reached by B3’s input generator.
* indicates that some relaxation of boundaries is required: e.g.,
#bug3 requires one core operation (i.e., chmod) but needs to open and
persist another file, which is not reachable by B3’s seq-1 workloads.

uniprocessing and non-preemptive kernel, we can trigger
the bug, as syscalls and the JBD2 thread are serialized but
not on the VM where we have no control of the scheduling.

Test case minimization. We also evaluate whether HyDRA
is capable of eliminating syscalls that do not contribute to
the manifestation of the bug. We run the minimizer on all
bugs Hypra found, and on average, the minimizer reduces
the number of syscalls in the PoC from 47.5 to 5.6, yielding
an 88% reduction. As a snippet of the effectiveness of the
minimizer, Table 6 shows how it reduces the syscalls in the
PoC for the nine crash consistency bugs Hypra found.

5.6 Crash Consistency Checker (SymC3)

We compare the crash consistency checker of Hypra with
the state-of-the-art prior work, B3, in detail, focusing on
false positives and performance.

Correctness. We tested HYDRA with 26 previous crash con-
sistency bugs that B3 collected as well as 10 new bugs that B3
found. SYmC3 detected 24 out of 26 previous bugs. One bug

B3 HypRra
Type #Tests Size T-Gen T-Comp (w/SymC3)
Prep. seq-1 0.3k 2.8 MB <lm <lm
seq-2 240k 27GB 3h28m 6h 31m None
seq-3 8,241k 948 GB 5d 1h -
Exec 0.2 exec/s 11.4 exec/s
FP+ 31k (100%) 0 (0%)

T-Gen: Time to generate, T-Comp: Time to compile
Table 7. Comparing HYDRA with B3 in terms of execution time and
precision in testing Btrfs of Linux v4.16. HYDRA generates test cases
on the fly, while B3 requires extensive resources for preprocessing
When testing seq-1/2 test cases, HYDRA incurs no false positives,
while B3 reports 31k incorrect consistency errors.

missed by SYmMC3 requires a special command, dropcaches,
and B3 also missed the same bug. Another bug requires
msync, which SymC3 currently does not support.

SYMC3 successfully detected all 10 bugs newly discovered
by B3. However, B3 missed all the bugs HypRA newly discov-
ered, for the following four reasons: (1) requiring more than
three core operations, (2) requiring the combining of both
metadata and data operations”, (3) not supporting crucial file
system operations, e.g., chmod, or (4) not supporting different
file types e.g., FIFO file.

False positives (incorrect reports). B3 runs the same test
case on two empty file system images while keeping one
image as a reference oracle and crashing the other. Then,
it tests crash consistency by comparing the files and direc-
tories in the oracle with those in the recovered image. As
noted in §3.4, the oracle is one of the possible post-crash
states, and B3 ends up flagging legitimate cases as bugs. Be-
cause of this systematic limitation, B3 reported 31k incorrect
consistency errors from the Btrfs file system in the v4.16
kernel, while HYDRA raised no false positives. The only pos-
sibility of SYmC3 having false positives is through bugs in
the checker. However, we fuzz-tested SymC3 for a month by
running SYMC3 without injecting a crash condition in the
LKL executor until there were no more bugs to fix.

Performance. B3’s strategy of enumerating all input space
requires a considerable amount of space and preprocessing
time for generating and compiling the test cases. As shown in
Table 7, it required more than five days for B3 to generate 8M
seq-3 test cases. To make matters worse, much bigger input
space, i.e., up to seq-5, has to be enumerated to generate the
test cases that cover the new bugs found by Hypra, which
makes B3 infeasible. On the other hand, because of fuzzing,
the input generation in HYDRA is dynamic and requires no
preprocessing. In addition, the speed of execution of HyDRA
is orders of magnitude faster than that of B3, further showing
HyYDRA’s usability as a large-scale framework.

4B3 only generated three non-exhaustive sets of seq-3 test cases: seq-3-data,
using write operations only, seq-3-metadata, using metadata operations
only, and seq-3-nested, using link and rename on nested directories and files.

158

fd_root = open(".", O_DIRECTORY, 0);

fd_foo = open("./foo", O_CREAT | O_RDWR, 0777);
fsync(£d_foo);

mkdir("./A", 0777);

ftruncate(fd_foo, 5595);

pwrite64(fd_foo, buf, 4000, 1303);
fsync(fd_root); // should persist both A and foo

I NS TR C R

Figure 11. FSCQ- fsync fails to persist directory A after fsync on
root directory. After a crash and recovery, only foo is in the file
system.

fd_root = open(".", O_DIRECTORY, 0);

fd_foo = open("./foo", O_CREAT | O_RDWR, 0777);
fsync(fd_root);

write(fd_foo, buf, 4000);

fdatasync(fd_foo); // foo should be size 4000

Figure 12. FSCQ- fdatasync fails to persist data in file foo. After
a crash and recovery, foo is empty.

L N

6 Case Study: Bugs in FSCQ

FSCQ [7] is a formally verified file system with proven spec-
ifications regarding correct behaviors of a crash-safe file sys-
tem, especially the precise definition of fsync and fdatasync
and how they react to logged writes and log-bypassing writes.
However, to our surprise, HYDRA is still able to find two bugs
that violate the crash consistency property, and both have
been acknowledged by FSCQ developers.

Figure 11 shows the PoC when fsync fails to persist a
directory entry. This bug triggers an uncovered part in their
proof, as noted by the developer,

the design of DFSCQ should permit them to be
crash safe, but the proofs don’t cover mixing direct
and logged writes, and logged writes currently are
not synced correctly.

The pwrite64 syscall (line 6) accidentally triggers the mixing
of direct and logged writes. As a ballpark fix (commit 97b50e),
all the logged writes in the fscqiirite procedure are disabled.
This case proves the effectiveness of HYDRA in generating
test cases that are hard for developers to contemplate even
with the help of machine-checked proofs.

Figure 12 shows the PoC when fdatasync is not persist-
ing data written to files. According to FSCQ developers, this
is due to different interpretations of the fdatasync on the
Linux man page [27], especially the part on “fdatasync... to
allow a subsequent data retrieval to be correctly handled.” If
one interprets “correctly handled” as all previously written
data to the file should be readable, this is a bug. However, this
is not the specification FSCQ formalizes. In FSCQ, fdatasync
forms a weaker guarantee: either empty content or the previ-
ously written data in its integrity is allowed, but nothing in
between. In this case, either 0 or 4000 as the size of foo is al-
lowed. In FSCQ, to force data to touch disk, fsync is required.
This bug is found and reported by B3 as well; therefore, we
do not count it in the new bugs found. By updating SymC3
to adopt the notion taken by FSCQ developers, SYmC3 can
tolerate this relaxed interpretation of fdatasync.

7 Discussion

Novelty over Janus. Although HYDRA has a mutation strat-
egy similar to Janus, there is a prominent difference between
these works. Unlike Janus which focuses only on memory er-
rors, HYDRA allows developers to find deeper semantic bugs
that have more devastating effects, such as data loss (crash
inconsistency) and programmable errors (inconsistent states
and specification violations). At a high level, Janus is only a
special instance of HYyDRA and HYDRA generalizes Janus’s ap-
proach, i.e, multi-dimensional exploration, and broadens the
scope of file system fuzzing by incorporating an additional
dimension: bug checkers.

Value as a Framework. As a framework, HYDRA provides
an automated process of revealing in theory any developer-
defined buggy situations: on behalf of developers, HYDrA
takes charge of automated input exploration, checker incor-
poration, and validation of found bugs while the bug checker
is only responsible for accurate description of the bug. Such
separation of concerns drastically improves the quality of
bug finding: higher efficiency and lower false positives. As
shown in §5.6, by letting developers solely focus on writing
a precise checker for crash inconsistency, HYDRA could find
bugs with higher accuracy and in less time than B3.

8 Related Work

HyYDRA is the first generic fuzzing framework that is capable
of testing and finding various types of bugs from existing
file systems. This section introduces and compares the most
relevant prior work with HYypRrA.

Finding bugs in file systems. There are two broad cate-
gories of approaches to find or eliminate bugs in file systems,
namely, model checking and formal verification.

1) Model checking can be done in a static or dynamic fash-
ion. Static approaches, such as JUXTA [31], and FERRITE [5],
attempt to compare either well-specified [5] or inferred [31]
models with the design or implementation of file systems.
Since static checkers lack concrete execution states, they
fundamentally suffer from high false positives, e.g., having
stochastic errors in inferred models [31].

Dynamic approaches, such as FiSC [54] and eXplode [52]
for general storage system bugs, B3 [33] for crash consis-
tency, and SibylFS [43] for specification violation, concretely
run and validate test cases, thereby rendering high true pos-
itives (i.e., most reported bugs are real). However, unlike
Hypra, which directs the input exploration toward a tar-
geted bug type while testing, existing methods aim to check
the model against a fixed but too-humongous-to-explore
number of test cases, exhaustively testing all the possible
non-deterministic executions.

2) Formal verification [7, 8, 28] is a promising new direc-
tion that can, in theory, eliminate all the semantic bugs of file
systems. However, as demonstrated by HYpRra, formal verifi-
cation in practice suffers from incorrect assumptions in the

159

proofs or often must embed unverified code such as interface
or driver. HYDRA can complement its effort by checking bugs
on the whole, end-to-end system as it is after the verification.
Fuzzing beyond memory safety. Besides the memory
safety bugs, there have been works that applied fuzzing tech-
niques to find other types of bugs, such as race condition [22],
use-before-initialization vulnerabilities [29], or even bugs
in deep learning systems [37]. As described in §3.5, HYDRA
can readily be extended to find these bug types by providing
corresponding checkers for existing file systems.

Fuzzing kernels. Syzkaller [17], KAFL [46], TriforceAFL [35]
are the state-of-the-art fuzzing frameworks for kernels. Un-
fortunately, their focus is to find non-semantic bugs such
as memory errors that have a clear signal, and thus fail to
trigger deep semantic bugs in file systems. In addition, by
specializing our focus to file systems, HYDRA can shorten
the execution time of a single test case, as well as increase
the reproducibility of found bugs by running the file system
code in user space with libOS.

9 Conclusion

This paper presents HYDRA, an extensible fuzzing framework
to find in theory any types of bugs in file systems. HYDrRA
cleanly separates the process of exploring the input space
from validating the existence of bugs of interest. Thus, with
HyDRA, developers may now focus on the core logic for hunt-
ing bugs of their own interest, while HYDRA takes care of file
system state exploration and test minimization. In our pro-
totype, we equip HYprA with both home-grown and exter-
nal bug checkers and discovered nine crash inconsistencies,
four POSIX violations, 23 logic bugs, and 59 memory er-
rors across various Linux file systems, including the verified
FSCQ. In particular, our crash consistency checker, SymC3,
outperforms state-of-the-art checkers in both accuracy and
performance. With existing and future file system checkers
unified under one umbrella, HYDRA can be the go-to solution
for one-stop testing on multiple aspects of file systems to
improve their quality. Looking forward, besides integrating
more checkers for local file systems, HYDRA may be further
extended for fuzzing networked and distributed file systems.

10 Acknowledgment

We thank Tej Chajed, Theodore Ts’o, the anonymous re-
viewers, and our shepherd, Junfeng Yang, whose comments
helped improve the paper. This research was supported, in
part, by the NSF award CNS-1563848, CNS-1704701, CRI-
1629851, and CNS-1749711; ONR under grant N00014-18-1-
2662, N00014-15-1-2162, and N00014-17-1-2895; DARPA TC
(No. DARPA FA8650-15-C-7556); ETRI ITP/KEIT[B0101-17-
0644]; and gifts from Facebook, Mozilla, Intel, VMware, and
Google.

References

(1]
(2]
(3]

(5]

(10]

(11]

(12]

Josef Bacik. 2017. Btrfs: add a extent ref verify tool. https://patchwork.
kernel.org/patch/9978579/. (2017).

Wendy Bartlett and Lisa Spainhower. 2004. Commercial Fault Toler-
ance: A Tale of Two Systems. (2004).

Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. 2017. Directed Greybox Fuzzing. In Proceedings of the
24th ACM Conference on Computer and Communications Security (CCS).
Dallas, TX.

Marcel Béhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016.
Coverage-based Greybox Fuzzing as Markov Chain. In Proceedings of
the 23rd ACM Conference on Computer and Communications Security
(CCS). Vienna, Austria.

James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,
Emina Torlak, and Xi Wang. 2016. Specifying and Checking File System
Crash-Consistency Models. In Proceedings of the 21st ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). Atlanta, GA, 83-98.

Mingming Cao, Suparna Bhattacharya, and Ted Ts’o. 2007. Ext4: The
Next Generation of Ext2/3 Filesystem.. In USENIX Linux Storage and
Filesystem Workshop.

Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay
Ileri, Adam Chlipala, M Frans Kaashoek, and Nickolai Zeldovich. 2017.
Verifying a High-performance Crash-safe File System Using a Tree
Specification. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP). Shanghai, China.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare logic
for Certifying the FSCQ File System. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP). Monterey, CA.
Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven
Kleiman, James Leong, and Sunitha Sankar. 2004. Row-Diagonal Parity
for Double Disk Failure Correction. In Proceedings of the 3rd USENLX
Conference on File and Storage Technologies (FAST). San Francisco, CA.
Pedro Fonseca, Rodrigo Rodrigues, and Bjorn B. Brandenburg. 2014.
SKI: Exposing Kernel Concurrency Bugs Through Systematic Schedule
Exploration. In Proceedings of the 11th USENLX Symposium on Operating
Systems Design and Implementation (OSDI). Broomfield, Colorado.
Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Ben-
jamin, Ashvin Goel, and Angela Demke Brown. 2012. Recon: Verifying
File System Consistency at Runtime. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies (FAST). San Jose, California,
USA.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. 2018. CollAFL: Path Sensitive Fuzzing. In Pro-
ceedings of the 39th IEEE Symposium on Security and Privacy (Oakland).
San Francisco, CA.

Google. 2016. KernelAddressSanitizer, a fast memory error detector
for the Linux kernel. https://github.com/google/kasan. (2016).
Google. 2018. KernelMemorySanitizer, a detector of uses of uninitial-
ized memory in the Linux kernel. https://github.com/google/kmsan.
(2018).

Google. 2018. syzbot. https://syzkaller.appspot.com. (2018).

Google Inc. 2015. KernelThreadSanitizer, a fast data race detector for
the Linux kernel. https://github.com/google/ktsan. (2015).

Google Inc. 2019. Syzkaller is an Unsupervised, Coverage-guided
Kernel Fuzzer. https://github.com/google/syzkaller. (2019).

Bogdan Gribincea. 2009. Ext4 Data Loss. https://bugs.launchpad.net/
ubuntu/+source/linux/+bug/317781?comments=all. (2009).

Alex Groce, Gerard Holzmann, and Rajeev Joshi. 2007. Randomized
Differential Testing as a Prelude to Formal Verification. In Proceedings
of the 29th International Conference on Software Engineering (ICSE).
Minneapolis, MN.

160

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred Model-based
Fuzzer. In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS). Dallas, TX.

Atalay Ileri, Tej Chajed, Adam Chlipala, Frans Kaashoek, and Nickolai
Zeldovich. 2018. Proving confidentiality in a file system using DiskSec.
In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Carlsbad, CA.

Dae R. Jeong, Kyungtae Kim, Basavesh Ammanaghatta Shivakumar,
Byoungyoung Lee, and Insik Shin. 2019. Razzer: Finding Kernel Race
Bugs through Fuzzing. In Proceedings of the 40th IEEE Symposium on
Security and Privacy (Oakland). San Francisco, CA.

Dave Jones. 2018. Linux system call fuzzer. https://github.com/
kernelslacker/trinity. (2018).

Jan Kara. 2014. ext4: Forbid journal_async_commit in data=ordered
mode. https://patchwork.ozlabs.org/patch/414750/. (2014).
Kernel.org Bugzilla. 2018. Btrfs bug entries. https://bugzilla.kernel.
org/buglist.cgi’component=btrfs. (2018).

Kernel.org Bugzilla. 2018. ext4 bug entries. https://bugzilla.kernel.org/
buglist.cgi?’component=ext4. (2018).

Michael Kerrisk. 2019. fsync, fdatasync - synchronize a file’s in-core
state with storage device. http://man7.org/linux/man-pages/man2/
fdatasync.2.html. (2019).

Eric Koskinen and Junfeng Yang. 2016. Reducing Crash Recoverability
to Reachability. In Proceedings of the 43rd ACM Symposium on Principles
of Programming Languages (POPL). St. Petersburg, FL.

Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Numberger,
Wenke Lee, and Michael Backes. 2017. Unleashing Use-Before-
Initialization Vulnerabilities in the Linux Kernel Using Targeted Stack
Spraying. In Proceedings of the 2017 Annual Network and Distributed
System Security Symposium (NDSS). San Diego, CA.

Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Shan Lu. 2014. A Study of Linux File System Evolution. Trans. Storage
10, 1, Article 3 (Jan. 2014), 32 pages. https://doi.org/10.1145/2560012
Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song,
and Taesoo Kim. 2015. Cross-checking Semantic Correctness: The
Case of Finding File System Bugs. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP). Monterey, CA.
MITRE Corporation. 2009. CVE-2009-1235. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2009-1235. (2009).

Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding Crash-consistency Bugs with
Bounded Black-box Crash Testing. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
Carlsbad, CA.

Ingo Molnar and Arjan van de Ven. 2019. Runtime locking correct-
ness validator. https://www.kernel.org/doc/Documentation/locking/
lockdep-design.txt. (2019).

NCC Group. 2017. AFL/QEMU Fuzzing with Full-system Emulation.
https://github.com/nccgroup/TriforceAFL. (2017).

Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine:
Optimizing OS Fuzzer Seed Selection with Trace Distillation. In Pro-
ceedings of the 27th USENIX Security Symposium (Security). Baltimore,
MD.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deep-
xplore: Automated Whitebox Testing of Deep Learning Systems. In
Proceedings of the 26th ACM Symposium on Operating Systems Principles
(SOSP). Shanghai, China.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing
by program transformation. In Proceedings of the 39th IEEE Symposium
on Security and Privacy (Oakland). San Francisco, CA.

Vijayan Prabhakaran, Lakshmi N Bairavasundaram, Nitin Agrawal,
Haryadi S Gunawi, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2005. IRON File Systems. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP). Brighton, UK.

https://patchwork.kernel.org/patch/9978579/
https://patchwork.kernel.org/patch/9978579/
https://github.com/google/kasan
https://github.com/google/kmsan
https://syzkaller.appspot.com
https://github.com/google/ktsan
https://github.com/google/syzkaller
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments=all
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments=all
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://patchwork.ozlabs.org/patch/414750/
https://bugzilla.kernel.org/buglist.cgi?component=btrfs
https://bugzilla.kernel.org/buglist.cgi?component=btrfs
https://bugzilla.kernel.org/buglist.cgi?component=ext4
https://bugzilla.kernel.org/buglist.cgi?component=ext4
http://man7.org/linux/man-pages/man2/fdatasync.2.html
http://man7.org/linux/man-pages/man2/fdatasync.2.html
https://doi.org/10.1145/2560012
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1235
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1235
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/nccgroup/TriforceAFL

[40] Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Tapus. 2010.

(41

[44

[45

[46

[47

[48

[49

]

=

—

]

]
]

—

LKL: The Linux kernel library. In Proceedings of the 9th Roedunet Inter-
national Conference (RoEduNet). IEEE.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. 2017. VUzzer: Application-aware Evolu-
tionary Fuzzing. In Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS). Dallas, TX.

Red Hat Inc. 2018. Utilities for managing the XFS filesystem. https:
//git.kernel.org/pub/scm/fs/xfs/xfsprogs-dev.git. (2018).

Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Mad-
havapeddy, and Peter Sewell. 2015. SibylFS: Formal Specification and
Oracle-based Testing for POSIX and Real-world File Systems. In Pro-
ceedings of the 25th ACM Symposium on Operating Systems Principles
(SOSP). Monterey, CA.

Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux
B-tree filesystem. In Proceedings of the ACM Transactions on Storage
(TOS).

Andrey Ryabinin. 2014. UBSan: run-time undefined behavior sanity
checker. https://lwn.net/Articles/617364/. (2014).

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback
Fuzzing for OS Kernels. In Proceedings of the 26th USENIX Security
Symposium (Security). Vancouver, BC, Canada.

SGI, OSDL and Bull. 2018. Linux Test Project. https://github.com/
linux-test-project/ltp. (2018).

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
2016. Push-Button Verification of File Systems via Crash Refinement.
In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Savannah, GA.

Silicon Graphics Inc. (SGI). 2018. (x)fstests is a filesystem testing suite.
https://github.com/kdave/xfstests. (2018).

161

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Theodore Ts’o. 2018. Ext2/3/4 file system utilities. https://github.com/
tytso/e2fsprogs. (2018).

Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Tae-
soo Kim. 2019. Fuzzing File Systems via Two-Dimensional Input Space
Exploration. In Proceedings of the 40th IEEE Symposium on Security
and Privacy (Oakland). San Francisco, CA.

Junfeng Yang, Can Sar, and Dawson Engler. 2006. Explode: a Light-
weight, General System for Finding Serious Storage System Errors. In
Proceedings of the 7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Seattle, WA.

Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson En-
gler. 2006. Automatically Generating Malicious Disks Using Symbolic
Execution. In Proceedings of the 27th IEEE Symposium on Security and
Privacy (Oakland). Oakland, CA.

Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.
2004. Using Model Checking to Find Serious File System Errors. In
Proceedings of the 6th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). San Francisco, CA.

Chao Yu. 2018. F2FS: f2fs_check_rb_tree_consistence. https://lore.
kernel.org/patchwork/patch/953794/. (2018).

Michal Zalewski. 2014. Bash bug: the other two RCEs, or how we
chipped away at the original fix (CVE-2014-6277 and ’78). https:
//lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.
html. (2014).

Michal Zalewski. 2019. American Fuzzy Lop (2.52b). http://lcamtuf.
coredump.cx/afl. (2019).

Andreas Zeller, Holger Cleve, and Stephan Neuhaus. 2019. Delta De-
bugging: From Automated Testing to Automated Debugging. https:
//www.st.cs.uni-saarland.de/dd/. (2019).

https://git.kernel.org/pub/scm/fs/xfs/xfsprogs-dev.git
https://git.kernel.org/pub/scm/fs/xfs/xfsprogs-dev.git
https://lwn.net/Articles/617364/
https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp
https://github.com/kdave/xfstests
https://github.com/tytso/e2fsprogs
https://github.com/tytso/e2fsprogs
https://lore.kernel.org/patchwork/patch/953794/
https://lore.kernel.org/patchwork/patch/953794/
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://www.st.cs.uni-saarland.de/dd/
https://www.st.cs.uni-saarland.de/dd/

	Abstract
	1 Introduction
	2 Background
	2.1 A Broad Spectrum of File System Bugs
	2.2 Toward Taming Bugs in File Systems
	2.3 Fuzzing as a Turnkey Solution

	3 Design
	3.1 Hydra Overview
	3.2 Input Mutator
	3.3 Library OS Based Executor
	3.4 Crash Consistency Checker (SymC3)
	3.5 Other Checker Plugins
	3.6 Feedback Engine
	3.7 Post Bug Processing

	4 Implementation
	5 Evaluation
	5.1 Bug Hunting in Popular File Systems
	5.2 Fuzzing Speed
	5.3 Code Coverage
	5.4 Checker Feedback
	5.5 Hydra Framework Services
	5.6 Crash Consistency Checker (SymC3)

	6 Case Study: Bugs in FSCQ
	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

