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Abstract—Unmanned Aerial Vehicles (UAVs), or drones, are
emblematic examples of cyber-physical systems where compu-
tational components and physical processes integrate to enable
autonomous navigation. UAVs rely heavily on sensors such as
Inertial Measurement Units (IMU) and Global Positioning System
(GPS) for accurate environmental awareness and control. How-
ever, the trust placed in these sensors makes UAVs vulnerable
to adversarial attacks that compromise the UAV’s operational
integrity. While prior work focuses on detecting attacks against
specific sensors, there remains a critical gap in performing Root
Cause Analysis (RCA) to determine which component failed and
why — especially under ambiguous or conflicting sensor reports.
To address this gap, we propose SOUNDBOOST, a novel RCA
framework that leverages the UAV’s acoustic side-channel (i.e.,
sound) to diagnose navigation failures and attribute them to
specific sensor compromises. While SOUNDBOOST detects attacks
by validating GPS and IMU sensor data, it focuses on post-
incident diagnosis. SOUNDBOOST conducts post-incident RCA by
extracting robust acoustic signatures and using machine learning
to cross-validate reported kinematics against physical behavior.
We deploy SOUNDBOOST on a UAV and evaluate it under real-
world GPS spoofing attacks and synthesized IMU biasing attacks.
SOUNDBOOST achieves 100% true positive rate for IMU attacks
and over 80% for GPS spoofing, outperforming the state-of-
the-art by 21% - demonstrating its effectiveness as a practical
forensic tool for sensor attack RCA.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly known as
drones, are transforming domains such as surveillance [46],
delivery [8], mapping [36], entertainment [24], and beyond [3],
[25]. Their ability to perform autonomous flights has made
them indispensable for both routine operations and high-stakes
missions. However, the growing reliance on autonomy also
expands the attack surface — particularly through the real-
time sensors that underpin navigation and stability control.
Among them, the GPS and the IMU are especially critical.
Autonomous flight depends on them not only for basic posi-
tioning, but also for real-time responsiveness to environmental
changes and overall flight integrity. For example, sensor attacks
such as GPS spoofing [18], [38], [45], [52] and IMU biasing
attacks [17], [48], [53], [55] severely compromise the UAV’s
navigation integrity and safety, posing risks of misnavigation,
crashes or even hijacking. A notable incidence occurred in
2011 when Iran used GPS spoofing to land and capture a U.S.
Lockheed Martin RQ-170 Sentinel drone [58].

Although existing defense approaches [10], [31], [40]
perform well in distinguishing targeted GPS attacks from

benign flight scenarios, they become ineffective when the
trusted sensors (i.e., the IMU) utilized for attack detection
are also under attack. For example, SAVIOR [40] utilizes the
integrity of the IMU to detect GPS spoofing attacks. While
this approach is effective under certain conditions, the Rocking
Drone attack [48] highlights that the IMU itself can also be
subject to attacks. This raises important considerations that
when GPS and/or IMU are compromised, it is challenging
to understand which sensor is the root cause. This highlights
the pressing need for a solution that conducts Root Cause
Analysis (RCA) for UAVs— explaining post-failure behaviors
and providing forensics for determining sensor compromise.

Our System. Motivated by the above issue in the existing at-
tack detection approaches, we propose SOUNDBOOST, a novel
RCA framework designed to diagnose UAV navigation failures
by leveraging the UAV’s acoustic side-channel to validate
the data from GPS and IMU sensors. While SOUNDBOOST
detects attacks, it does not focus on real-time attack detection.
It performs post-incident RCA to determine if a failure was
attack-induced and, if so, identifies the compromised sensors
using the UAV’s acoustic emissions. Unlike the data from
GPS or IMU sensors, which are susceptible to spoofing, the
acoustic signatures generated by UAV’s physical components
during operation reliably reflect its movements. Thus, these
acoustic signals are inherently resistant to spoofing attacks
(§ IV-D), providing a trustworthy source for attack detec-
tion and RCA. By integrating the acoustic side-channel data
with onboard sensor data, SOUNDBOOST provides a robust
mechanism for identifying compromised sensors in the UAV
navigation system. To the best of our knowledge, this is the first
work capable of detecting IMU and GPS attacks altogether,
conducting comprehensive RCA for UAV navigation systems.

Key Idea. SOUNDBOOST is built on a real-world observation:
during flights, UAVs emit acoustic signals (i.e., sounds) that
provide supplementary and reliable information of actuation.
These signals are not only hard to spoof but also reflect
physical outcomes of the UAV’s behavior, making them ideal
for post hoc validation of sensor data. By employing a mi-
crophone array to capture these sounds and analyzing them,
SOUNDBOOST builds a detailed acceleration profile of UAVs
that serves as a signature for performing RCA and detecting
sensor attacks targeting GPS and IMU sensors. SOUNDBOOST
is particularly valuable as it capitalizes on additional reliable
information collected during real flights — previously unex-
ploited — offering a new course to improve UAV security.



Workflow. SOUNDBOOST collects the acoustic signals from
the UAV during real flight missions using a microphone array.
These signals are filtered to isolate the sound frequencies
primarily emitted by the UAV motors. Applying Fast-Fourier-
Transform (FFT) analysis, SOUNDBOOST obtains the acoustic
signatures for the flights (§ III-A). Next, in the sensory map-
ping phase, SOUNDBOOST trains an acoustic Deep Learning
model to learn the correlation between the acceleration vec-
tor az,dy,a, of the UAV based on the ground truth data
provided by an intact IMU. To minimize the impact of en-
vironmental factors (e.g., wind) and IMU measurement noise,
augmented training data is employed (§ III-B). Once trained,
SOUNDBOOST uses the model to predict acceleration vectors
ay',dy’, d;’ during flight missions to determine whether the
IMU or GPS sensors are under attack (§ III-C).

More specifically, SOUNDBOOST conducts RCA for UAV
navigation systems in two stages:

1) SOUNDBOOST determines whether the IMU is under attack
by examining the distribution of distances between the pre-
dicted a;’, ay’, a;’ and the actual readings a, , dy, , d, from
the IMU over a 0.5-second window (a hyper-parameter
found in §IV-B). If the IMU is under attack, the observed
distribution deviates significantly from the normal distribu-
tion observed under benign conditions, as shown in Fig. 6.

2) To detect GPS spoofing attacks, SOUNDBOOST uses the
predicted a;’,dy’, a;’ to derive the prediction of the ve-
locity vectors v,',v,’,v." and compares them with the
velocity readings v ,vy,v. from the GPS. If it finds
that the IMU is not compromised in the previous step, it
fuses the sane IMU readings d; , dy ,a> with the predicted
ay',dy,’,a.’ using a customized Kalman Filter to offer
even more robust detection of GPS spoofing attacks.

Evaluation. We evaluate SOUNDBOOST against two classic
sensor spoofing attacks: IMU biasing attacks [55] and GPS
spoofing attacks [45] (§ IV-C). Our experiments show that
SOUNDBOOST accurately identifies attacks on specific sensors
and performs RCA with high precision. We highlight:

1) SOUNDBOOST’s acoustic model for predicting can produce
robust a;’, a,’,a.’, even in the presence of malicious in-
terference. Concretely, SOUNDBOOST achieves to attribute
the navigation system anomaly to IMU and identify all
IMU biasing attack with a false positive rate as low as
10% in 20 flights.

2) Our experiment (Tab. II) shows that SOUNDBOOST can
identify GPS anomaly and detect GPS spoofing attacks with
79% true positive rate when considering the IMU is not
trustworthy, outperforming the state-of-the-art by 21% and
the baselines [10], [15] by 53% and 11%, respectively.

3) SOUNDBOOST’s detection rate is even higher at 89% when
the IMU is determined intact.

II. BACKGROUND

This section provides the technical foundation for under-
standing UAV navigation systems and their vulnerabilities and
motivates the need for robust a RCA technique.

A. UAV Control Systems

A typical UAV control system includes several key compo-
nents: sensors (such as GPS and IMU), Proportional-Integral-

Derivative (PID) controllers, actuators, and control algorithms.
We review how these components interact to control a drone.

1) Sensors continuously provide data on position, speed, and
acceleration. UAVs rely on a combination of sensors.

2) Control Algorithms estimate the UAV’s states and drive it
along a path. It continuously refines the estimations based
on real-time sensor data to adapt to changing conditions.

3) PID Controllers interpret sensor data and compute control
signals. The proportional component responds proportion-
ally to the current deviation; the integral component ad-
dresses accumulated errors; and the derivative component
reacts to error rate changes. They adjust motor speeds
based on the difference between the desired setpoint and
the current state.

4) Actuators are motor-driven propellers that respond to the
control signals from the PID controllers to adjust the
drone’s thrust, roll, pitch, and yaw.

5) Control Loop integrates sensor inputs and control outputs.
Sensor inputs (e.g., IMU and GPS data) are used for state
estimations, which are processed by PID controllers, which
then adjust the actuators. This control loop continuously
updates, allowing the UAV to respond dynamically to the
environment and flight commands.

B. UAV Navigation System

The GPS and IMU are the core technologies enabling real-
time and precise UAV navigation, forming the foundation of
most autonomous systems. GPS provides global positioning
by leveraging satellite data to pinpoint locations within meters.
However, its low update frequency limits effectiveness for real-
time localization and rapid decision-making. IMU provides
high-frequency local movement and orientation data using
accelerometers and gyroscopes, enabling real-time stabilization
and control. However, IMU is inaccurate compared to GPS and
thus is prone to cumulative drift errors over time if used alone.
To address these limitations, UAVs fuse GPS and IMU data
using a Kalman Filter (KF), which reduces sensor noise and
precisely estimates physical states by combining the precision
of GPS with the responsiveness of IMU.

C. Attack Surfaces

Nevertheless, this reliance on GPS and IMU technologies
exposes the UAV navigation system to larger attack surfaces.
Among the prevalent risks, GPS spoofing and IMU biasing
attacks stand out as substantial threats to UAV security [12],
[35], [371, [42], [47], [48]. GPS spoofing injects false GPS
signals that the GPS receiver mistakes as legitimate satellite
signals. With spoofed GPS signals integrated, the control loop
of UAV makes wrong perceptions of its position, resulting in
deviations from the planned path. On the other hand, the IMU
biasing attack involves injecting systematic errors into the IMU
sensor through physical manipulations. This causes incorrect
readings in accelerations or angular velocities, causing the
flight controller to make incorrect adjustments of the UAV,
resulting in erratic flight behaviors. These attacks severely
undermine the operational integrity of UAVs, as evidenced by
existing works, highlighting their practical implications and the
urgent need for defense measures [10], [34], [40], [45].

Challenges. Despite existing research efforts focusing on
monitoring, detection, and mitigation of specific UAV at-



tacks [10], [31], [40] — primarily through sensor fusion
techniques using KF and identifying predictable patterns —
these measures often fall short against novel or unidentified
threats. The assumption that a specific sensor is compromised
by a known type of attack limits the effectiveness of such
defensive strategies. The fact that either IMU or GPS or
both of the sensors can be compromised challenges us with
a solution capable of conducting accurate post hoc RCA to
pinpoint compromised sensors amidst unknown attacks. Unlike
the existing works, our goal is not immediate intervention but
post-failure analysis to detect attack, identify compromised
sensor, and make decisions on whether to trust the specific
sensor for future state estimations. We provide the design of
SOUNDBOOST in § III-C.

D. Acoustic Side-Channel on UAVs

To conduct reliable RCA and unknown sensor attack de-
tection, we need a reliable information source other than the
existing sensors for UAVs. The acoustic side-channel signals
that are physically emitted during flights provide a trustworthy
reflection of the flight status which we deem reliable.

Thrust. UAV’s actuation results in propeller motion that
generates acoustic signals as a physical byproduct that cannot
be eliminated. A rotating propeller creates a pressure difference
between the front and back sides of its blades. As a result, the
air accelerates in the backward direction, creating a reaction
force in the opposite direction, known as thrust, which gener-
ates three types of noises.

1) Blade passing noise: A low-frequency sound that depends
on the number of blades and propellers’ rotational speed.

2) Mechanical noise: A mid-frequency sound from the pro-
peller system’s mechanical components and electrical noise
from the Electronic Speed Controller (ESC). Motor speed
affects electromagnetic forces, influencing vibrations and
acoustics in this range.

3) Aerodynamic noise: A higher-frequency sound is caused
by blade-air interactions. Blade design, shape, and angles of
attack influence airflow patterns, turbulence, and vortices,
shaping this noise.

Dynamics Captured through Acoustic Side-Channels. The
utilization of acoustic signals as a diagnostic tool for capturing
UAV dynamics stems from the analogous methods employed
in cyber-physical additive manufacturing systems [7]. Specif-
ically, UAV flight dynamics, including acceleration, decelera-
tion, and turnings, manifest in distinctive acoustic patterns. For
instance, during ascent, all four motors spin faster simultane-
ously, generating a sound pattern with higher amplitude and
higher pitch. When the UAV turns, the motors at diagonally
opposed positions exhibit varying speeds, contributing to a
nuanced acoustic profile. Furthermore, each propeller emits a
distinct sound, louder and higher-pitched during acceleration
and quieter with a lower pitch during deceleration.

By placing a microphone array with four microphones at
an off-center location onboard, each propeller can be located
by employing the Time-Difference-of-Arrival (TDoA) tech-
nique. This method calculates the differences in the time it
takes for the sound waves from each propeller to reach the
microphones, allowing for triangulation of the position of each
sound source [51]. The strategic off-center placement of the
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Fig. 1: Overview and workflow of SOUNDBOOST.

microphone array further enhances this differentiation, with
microphones closer to a propeller receiving louder sounds,
while those farther ones receive quieter sounds. This setup not
only enables the distinct identification of each propeller based
on its acoustic characteristics but also facilitates the inference
of the UAV’s acceleration dynamics. By mapping these acous-
tic patterns to known maneuvers, it enables inference of the
UAV’s acceleration in three dimensions. Thus, the real-time
changes in the acoustic signals emitted during flight provide
a reliable means for RCA after mission failures, detecting
attacks against the UAV navigation system and identifying
compromised sensors.

Challenges. Currently, there is no comprehensive sound
dataset available for UAV flights that can be used to correlate
the IMU measurements, nor is there a dataset for UAV sound
under sensor attacks. Although there are existing works using
the acoustic signals for UAV indoor location estimation [30],
[51], finding the accurate correlation between the acoustic
signals and IMU data for RCA and sensor attack detection
in unseen real-world scenarios is still a challenge. It is also
necessary to consider environmental variability, such as winds,
which challenges us to augment the dataset for a more robust
model across various environmental conditions. We provide
our solution to this challenge in § III-B.

E. Threat Model & Assumptions

Assumptions. We assume the UAV is benign, and its hardware
and firmware are free of attacks. Additionally, we assume the
UAV only relies on GPS and IMU for navigation, as LiDAR
or vision sensors are optional to most of the UAV models.
Moreover, by default, during the flight, the UAV operates in
low-sensitivity failsafe mode, aiming for an emergency landing
in case of sensor failure.

Threat Model. We assume that the attacker possesses full
knowledge of the current flight status of the UAV (e.g., flight
path, location, etc). This attacker can launch sensor spoofing
attacks to inject false signals into either the GPS [45] or the
IMU sensors [55] in the navigation system from the ground
for which the distance between the attacker and the UAV is
limited by the flight altitude. The attacker can perform the
attacks at any given time after the UAV finishes taking off and
before it starts landing. The primary objective of the attacker
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Fig. 2: (a) shows the frequency distribution of the audio signal captured by a microphone. The signals are mainly concentrated
around three frequencies; 200 Hz group (blade passing noise), 2500 Hz group (mechanical noise), and 5500 Hz group
(aerodynamic noise). (b)-(d) shows the correlation between the amplitude (i.e., amp) of acoustic signals and measured acceleration
- hovering (constant acceleration), decelerating (negative acceleration), and accelerating (positive acceleration).

is to control the UAV’s positioning and influence its flights in a
stealthy way rather than crashing the UAV. As for the detection
sensor, we assume that the attacker can perform a reasonable
sound spoofing attack using an off-the-shelf portable speaker
for record-and-replay attacks up until around 100 dB, the max
volume of a portable speaker [43]. Considering practicality and
stealthiness, we do not consider cases in which the attacker
is capable of using a directional speaker or a loudspeaker to
spoof our microphone. Such methods are not cost-effective and
would require the attacker to create precise phase-shifted audio
signals to cancel out the audio signals from the moving drone
and inject the loud signals into the detector onboard, which is
practically intractable.

III. DESIGN

Fig. 1 illustrates the overview of SOUNDBOOST, including
four components: (1) an acoustic signature generation stage
where SOUNDBOOST captures and extracts the acoustic sig-
natures of the UAV (§11I-A); (2) an offline learning stage where
SOUNDBOOST trains a DL model to map the acoustic signa-
tures with the IMU measurements (§ III-B); (3) an RCA IMU
attack detection stage where acoustic signatures are fed into the
model for sensory prediction, which is then compared with the
IMU measurements for IMU attack detection (§III-C1); (4) an
RCA GPS attack detection stage where SOUNDBOOST learns
the parameters of the UAV’s physical invariants for physical
state estimations and uses the sensory predictions from the DL
model for GPS attack detection (§ III-C2).

A. Acoustic Signature Generation

The acoustic signatures for the flight are generated online
within a specific time window. SOUNDBOOST performs a
Fast Fourier Transform (FFT) analysis of the audio signal,
converting a time-domain audio signal into the frequency
domain. This enables SOUNDBOOST to identify the presence
and strength of different frequency components within audio
signals. SOUNDBOOST identifies specific frequency compo-
nents related to noise sources. As shown in Fig. 2a, the
signals concentrate mainly on three frequency domains. The
signals around 200 Hz identify the blade passing noise, which
we call blade passing frequency group. The signals around
2500 Hz identify the mechanical noise, which we refer as

the mechanical frequency group. The signals in the higher
frequency domain around 5500 Hz identify as aerodynamic
noise, for which we call the aerodynamic frequency group.

SOUNDBOOST filters out audio frequencies larger than
the aerodynamic frequency groups (i.e., 6 kHz), such that
it includes these characteristic frequency bands and is not
impacted by IMU spoofing attacks. Since these attacks typ-
ically utilize frequencies above the audible range (above 20
kHz) [48], our deliberate focus on the audible spectrum en-
sures SOUNDBOOST is innately immune to such interference.
This inherent filtering capability enhances the security of the
microphone array sensor and protects it against ultrasonic
manipulations aimed at disrupting IMU sensors.

Acoustic Signatures v.s. Acceleration. Fig. 2 shows the
amplitude pattern of the aerodynamic frequency groups during
different actuation processes, demonstrating the correlation
between acoustic signatures and UAV acceleration. When the
UAV is hovering (Fig. 2b), the amplitude of the acoustic
signals remains almost unchanged. Fig. 2c shows that when
the UAV is decelerating, the amplitude of the acoustic signals
decreases over time. This phenomenon is intuitive in that
decelerating requires less motor power, which makes less
noise. Fig. 2d demonstrates the opposite effect. Leveraging
such a correlation, SOUNDBOOST can map the acoustic signals
with the acceleration vectors in x, ¥y, z directions

B. Acoustic Signature & Sensory Mapping

To map the generated acoustic signature to the real-world
IMU measurements, SOUNDBOOST utilizes a DL model to
find their correlation. To achieve this goal, SOUNDBOOST
needs to determine the best time window of collected data
so that the correlation is not over-fitting or under-fitting.
Moreover, the DL model has to be robust to the environ-
mental impact, specifically the winds. To achieve this goal,
SOUNDBOOST leverages data augmentation. The modeling
phase is conducted offline using the acoustic signatures as the
features to learn the corresponding raw IMU measurements
over a certain time window. The model captures patterns
and correlations between acoustic signatures and IMU la-
bels, recognizing relationships in frequency components of
aerodynamic and mechanical noise. This mapping enables the



model to generalize and predict UAV postures and behaviors,
providing insights into flight missions by analyzing audio data.

DL Model Selection. We employed three DL models popu-
larly used for processing audio data: ResNet101, MobileNetV2,
and a Neural Ordinary Differential Equations (ODE) model.
We use a sliding window to align the acoustic signals and
onboard IMU readings and use the IMU readings as the ground
truth. Then, we train each model with mean squared error
loss (MSE) as the loss function, ensuring that the predicted
sensory from the audio signature would be closely aligned
with IMU measurements. This training process also ensures
that the measurement noise of the onboard IMU is minimized
through the DL model.

Time Window. The choice of the time window for acoustic
signature is critical for capturing the acoustic signals in relation
to the IMU measurements. Since the IMU measurements are
sampled at a fixed rate, we have to select a time window at
least as large as the IMU sampling window. The time window
should be large enough to capture the entire acceleration
process and short enough to capture the rapid changes in
different maneuvers. We choose the time window empirically
through experiments for our UAV model, which enables us to
have a precise correlation between the audio and motion data
of the UAV and for further RCA and post hoc attack detection.

Data Augmentation. To build a robust model, we need to
consider the impact of winds. Collecting data under different
wind conditions is challenging. Therefore, we choose data aug-
mentation to enrich the training dataset. Varying wind speeds
cause the UAV to frequently change its actuation to maintain
the acceleration or velocity setpoint, resulting in fluctuations
in the acoustic patterns (§ I1I-A). When encountering winds,
due to the nature of the PID controller, UAVs may drastically
change the actuation initially to quickly counteract the wind’s
effect and vary their actuation time to maintain the acceleration
setpoint and smooth the flight. As illustrated in Fig. 3, with
tailwinds, the UAV’s propellers spin slower, generating softer
sounds, and it requires less time to reach a desired setpoint
(e.g., a desired velocity). With headwinds, the UAV’s motors
have to rotate faster, generating louder sounds, to fight against
a continuous adverse wind, for which the UAV has to actuate
for a longer period.

With this theory, we use “Time Shift” (Fig. 3) to augment
the dataset, exposing the model to a broader variety of temporal
scenarios within the data. Specifically, we augment the data
by varying the time window: a larger window simulates
headwinds, and a smaller window simulates tailwinds. For
example, the entire sequence of data in Fig. 2d represents
the effort of fighting against various speeds of headwinds,
a larger window with fixed number of data points of the
sound amplitude can capture the entire process. Similarly, the
effect of various speeds of tailwinds can be captured using a
smaller window. Since the shortened actuation process under
tailwinds is covered by the focused window, we expect limited
performance improvements by augmenting with small time
windows. We focus on augmenting the dataset with various
expanded time windows to better expose the whole actuation
process under any headwind scenarios to the model.

Velocity
Vtarget
—— With tailwind
With no wind
With headwind

Time

th

Fig. 3: Time shift augmentation. Wind conditions affect the
time required to reach a target velocity (vViqrget). With no wind,
this time is ¢,, while tailwinds reduce it (¢;) and headwinds
extend it (t). To account for these variations, we augmented
the dataset by using sampling windows of different lengths.

C. Root Cause Analysis Framework

The primary objective of root cause analysis is to identify
the origin of the problem or the fault within the navigation
system after mission failure. By leveraging the acoustic side-
channel, SOUNDBOOST generates detailed audio signatures
that enable post hoc RCA and detection of attacks on the
drone. SOUNDBOOST conducts two layers of RCA to pinpoint
the compromised sensor during a sensor attack. To pinpoint
the compromised sensor, SOUNDBOOST first identifies the
discrepancies in the IMU measurements and corresponding
sound patterns, then the GPS measurements with the motion
estimation output (described in § III-C2).

1) IMU Attack Detection: SOUNDBOOST leverages audio
acceleration predictions from its ML models to detect IMU
biasing attacks. During attacks, where the IMU readings are
manipulated by the attacker, the unaffected acoustic signatures
act as a reliable benchmark, revealing any disparities in the
IMU measurements. Under normal conditions, IMU measure-
ments should closely match audio acceleration predictions.
In contrast, when a spoofing attack targets the UAV’s IMU,
the attacker provides false measurements. While the acoustic
signatures, being a physical byproduct of the UAV’s operation,
are not subject to the same spoofing, the audio acceleration
prediction, therefore, remains accurate. Consequently, discrep-
ancies between the IMU readings and the audio acceleration
predictions will be observed, indicating a potential attack.

Threshold. Attack detection is achieved through out-of-
distribution detection. SOUNDBOOST begins with analyzing
the distribution of the differences between the acceleration
measurements and the audio acceleration predictions in benign
settings. We observe that the distribution of the residuals
closely approximates a normal distribution in benign settings,
as demonstrated in the evaluation (§ IV-A). Leveraging this
insight, SOUNDBOOST analyzes whether an attack is occurring
within the time window. This post hoc analysis is performed as
part of RCA, for each time window, SOUNDBOOST calculates
the residuals between the predicted audio accelerations and the
actual IMU measurements. To determine the presence of an
attack, we subject these residuals to a Kolmogorov-Smirnov
Test against the normal distribution observed under benign
conditions. If the residuals within the detection window deviate
significantly from this normal distribution, SOUNDBOOST
flags the occurrence of a potential IMU biasing attack.
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2) GPS Attack Detection: For GPS attack detection,
SOUNDBOOST first conducts control analysis for motion esti-
mations of the UAV using the audio acceleration prediction as
well as the IMU measurements if determined to be trustworthy.
To estimate the UAV motions, SOUNDBOOST adopts two
versions of Kalman Filters (KF) for accurate sensor fusion
for control analysis in the pipeline. Then, SOUNDBOOST uses
the state estimation output from the control analysis step for
GPS attack detection.

Version 1: Audio Only KF (with compromised IMU). In the
case when the IMU is deemed not trustworthy, SOUNDBOOST
focuses exclusively on the audio acceleration predictions. The
KF receives audio-derived acceleration as the primary input.
This acceleration prediction, obtained through audio signal
analysis, serves as the only basis for velocity estimation.

In the KF prediction step, SOUNDBOOST utilize the North-
East-Down transformed audio acceleration predictions to fore-
cast the velocity of the UAV. By employing the first kinematic
formula in the state prediction step:

v =v9+a-t
For prediction:

Uglk—1 = FrOp—1jk—1 + Brak
Pyp—1 = FrPy 11 Fl + Qu

where the Predict State and Predict State Covariance are calcu-
lated. ¥y, predicts velocity and acceleration state estimate
at time k given information until time k — 1; O3, _qx—1 is the
updated velocity and acceleration state estimate at time k — 1
given measurement at time k — 1; F}, is the state transition
model for velocity; By, is the control input model for accel-
eration; and ay, is the control vector for acceleration; Py p_1
predicts state covariance matrix for velocity and acceleration
at time k given information until time k — 1; @)y, is the process
noise covariance. SOUNDBOOST predicts the velocity at the
next time step based on the updated current velocity. This
prediction provides an initial estimate of the UAV’s velocity
state and the state covariance matrix for the subsequent fusion
process. In the KF update step, SOUNDBOOST leverage the
North-East-Down transformed audio acceleration prediction
to refine the previous velocity estimate.

For the update, SOUNDBOOST calculates the Kalman Gain:
-1
Ky = Py Hy. (HePy—1H + Ry)

and updates state estimate and state covariance with audio
acceleration predictions:

Oge = Onfr—1 + K (26 — HiOpjp—1)
Py = (I — K. Hy) Prjr—1

where 0y, updates velocity and acceleration state estimate at
time k given measurement at time k; Hj is the observation
model for audio prediction; Ry is the observation noise co-
variance; K, is the Kalman Gain; z; is the audio acceleration
prediction at time k; Py, updates the state covariance matrix
for velocity at time k; and [ is the identity matrix.

Version 2: Audio + IMU KF (with benign IMU). For the
case when the IMU is benign and can be used for analysis,
SOUNDBOOST utilizes a customized KF design for a more
reliable velocity estimation using both the IMU measurements
and the audio predictions. The overview of this framework is
shown in Fig. 4. For our customized design, SOUNDBOOST
uses the IMU measurements in the prediction step and the
audio prediction in the update step for weighted measurements.
We customized the KF prediction step to utilize the North-
East-Down transformed IMU acceleration to forecast the ve-
locity of the UAV.

Predict State and Predict State Covariance are given by:

Ogjk—1 = Flir—1 + Brag
Pyji—1 = FePo_1jp1 B + Qe

where 0,1 predicts velocity and acceleration state estimate
at time k given information until time k& — 1; Z;_1 is the
IMU measured velocity and acceleration state estimate at time
k — 1; F} is the state transition model for velocity; By is
the control input model for acceleration; and ay, is the control
vector for acceleration; Py ;1 predicts state covariance matrix
for velocity and acceleration at time & given information until
time k — 1; Qy is the process noise covariance.

SOUNDBOOST predicts the velocity at the next time step
based on the current velocity and measured IMU acceleration.
This prediction provides an initial estimate of the UAV’s ve-
locity state and the state covariance matrix for the subsequent
fusion process. For the update step, SOUNDBOOST uses the
same algorithm as in the audio-only KF, with z; being the
audio acceleration prediction at time &k for the update. By
incorporating the velocity calculated from the audio accelera-
tion prediction, SOUNDBOOST updates the previous estimation
with a weighted combination of the two velocity sources.
The weights assigned to the IMU and audio acceleration
predictions reflect their respective reliabilities and are updated
dynamically, enabling the KF to fully utilize the information
from both sources.

The fusion of the IMU and audio acceleration predictions
in the KF allows SOUNDBOOST to capitalize on the strengths
of each sensor while compensating for their individual lim-
itations for the post hoc RCA process. The IMU provides
high-frequency measurements that capture rapid changes in
the UAV’s velocity, while the audio acceleration prediction
offers additional insights into the UAV’s movement based on
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Fig. 5: GPS Spoofing Detection. Through prediction and state
estimation, our framework assigns weights to different data
sources and estimates the velocity for attack detection.

acoustic cues. By combining these sources through the KF,
SOUNDBOOST obtains a more robust and accurate estimation
of the UAV’s velocity. This fused velocity information serves
as a crucial input for the overall control analysis, enabling more
precise velocity estimations for post hoc attack detections.

Detection. In the RCA attack detection step, SOUNDBOOST
uses the fusion result from its KF framework to identify poten-
tial attacks against the UAV. Fig. 5 illustrates the overview of
the attack detection procedure. SOUNDBOOST first measures
the error between each observation of the fused location and
the GPS measurements in benign cases without GPS spoofing.
This error measurement serves as a reference to gauge the
expected behavior of the system. Then, SOUNDBOOST repeats
the error measurement process on datasets where attacks are
known to be present. SOUNDBOOST accumulates the differ-
ence between the GPS velocity and the velocity reference and
monitors the running mean of the error. When analyzing the
testing data, SOUNDBOOST deems a potential attack to be
present if the running mean of the error exceeds a predefined
threshold, which is the maximum running mean error of the
benign cases after removing outliers. This comparison allows
SOUNDBOOST to identify continuous deviations from the
expected behavior, which signals the potential occurrence of an
attack. By continuously monitoring the velocity deviations and
the cumulative error, SOUNDBOOST can detect abnormal pat-
terns deviating from expected behavior. These patterns indicate
external disturbances or attacks on the vehicle, allowing for
further timely intervention and appropriate countermeasures.

D. Design Choices and Onboard Implementation

Our design explicitly targets the constraints of typical
UAV platforms by prioritizing low computational overhead
and ease of integration. We use the PX4 autopilot [33] to
showcase the practical efficacy of our framework, benefiting
from PX4’s open-source nature and extensive user base. We
use a Raspberry Pi, functioning as a companion computer,
to supplement the PX4 autopilot, providing the computa-
tional capacity for SOUNDBOOST. We use MAVSDK [32],
a companion software development kit, to directly access,
control, and communicate with the UAV during flight using
the MAVLink protocol. For sound collection, we use the Seed
Studio ReSpeaker USB Mic Array [50] that connects to the
Raspberry Pi. This microphone array features an array of four
digital microphones strategically positioned off-center on the
UAV’s frame, a location that permits sound localization from
distinct propellers. Data from the UAV and the microphone

array are gathered and synchronized on the Raspberry Pi. All
the RCA steps of SOUNDBOOST can be easily completed
by the Raspberry Pi. Unlike many onboard systems that rely
on powerful edge computing modules such as the NVIDIA
Jetson or cloud processing due to real-time demands, our
design emphasizes lightweight, fully self-contained post hoc
RCA capabilities. The choice reflects a practical trade-off
between inference latency, power consumption, and platform
compatibility, ensuring that SOUNDBOOST can operate fully
onboard without compromising flight stability or significantly
affecting mission duration. Furthermore, by co-locating acous-
tic sensing and telemetry processing, our design achieves tight
synchronization and avoids bandwidth bottlenecks that arise
sharing data elsewhere for processing. This design ensures
reproducibility and shows that post hoc RCA is feasible with-
out specialized hardware, enabling deployment on resource-
constrained UAV systems.

IV. EVALUATION

In this section, we evaluate the overall effectiveness
of SOUNDBOOST as a post hoc RCA framework. While
SOUNDBOOST performs anomaly detection as part of RCA
pipeline, SOUNDBOOST only triggers after a mission failure
observed. We demonstrate the effectiveness and robustness of
SOUNDBOOST by evaluating its ability to detect IMU and GPS
spoofing attacks as part of RCA. Specifically, we show:

e The acoustic signals obtained from the UAV’s motors are
effective in predicting its acceleration and are not affected
by sound spoofing attacks (§ IV-A).

e SOUNDBOOST can accurately detect IMU biasing attacks
based on trained acoustic signatures of UAV (§ IV-B).

e SOUNDBOOST can accurately pinpoint GPS spoofing at-
tacks even when UAV is under IMU biasing attack (§IV-C).

e SOUNDBOOST is robust to sound spoofing attacks (§IV-D).

A. Efficacy of Acoustic Side-Channel

Setup and Data Collection. We used a Holybro X500 drone
with a Raspberry Pi as the companion computer for the experi-
ments. We utilized a microphone array, strategically positioned
off-axis on top of the body of the UAV to capture the acoustic
signals generated from the four motors while conducting
different flight maneuvers. To train our model, we collected 36
benign flights. These flights covered a wide range of maneu-
vers, including hovering, ascent, descent, forward flight, and
turns across 6 carefully designed extended navigation scenarios
leading to diverse acoustic patterns. For testing, we conducted
21 additional flights (10 with IMU attack, 11 with GPS
spoofing attack) that are unseen in training flights to assess
the generalization capability of SOUNDBOOST. Specifically,
for GPS spoofing evaluations, testing flights involved different
flight lengths, speeds, and mission trajectories compared to the
training set, ensuring robustness against trajectory variations.
To ensure that the data represents real-world scenarios, all
flights were conducted outdoors in diverse environments, in-
cluding calm and windy conditions with various ambient noise
levels. This dataset is designed to ensure that SOUNDBOOST is
evaluated on a wide range of flight scenarios, demonstrating its
applicability to unseen trajectories and real-world conditions.



TABLE I: Data Augmentation Choice. By experimenting with
different window size augmentations, augmenting the chosen
window (0.5 seconds) five times performs the best.

Augmentation Train  Validation Test
Window Size MSE MSE MSE
w/ 0.5x 0.2322 0.3924 0.3371
No Aug. 0.2215 0.3667 0.3325
w/ 1x 0.1478 0.4694 0.5468
w/ 2x 0.0571 0.4463 0.3963
w/ 3x 0.1343 0.4924 0.5244
w/ 5x 0.1059 0.3450 0.3366

Acoustic Signature Window and Data Augmentation. Win-
dow size is an important parameter that impacts the mapping
of the acoustic signatures to the IMU measurements. It defines
the span of audio data used to predict IMU readings and
significantly impacts the model’s accuracy. To figure out the
ideal window size for the MobileNetV2 model we used, we
experimented with window sizes spanning from 0.1 to 2
seconds. We found out that smaller window sizes enable the
model to perceive and learn intricate patterns in the acoustic
signatures, thus improving prediction accuracy for IMU mea-
surements. However, as the window size increases beyond 0.5,
this granularity is lost, causing the Mean Squared Error (MSE)
to rise, leading to decreased performance. The optimal window
size was 0.5 seconds, balancing detailed pattern recognition
with sufficient context for robust mapping.

To further improve the model’s resilience against environ-
mental factors like wind, time-shift data augmentation is used
(§ III-B). This approach aimed to capture subtle variations
of wind directions by augmenting the training dataset. We
experimented with augmentation window sizes ranging from
0.5x to 5X, the optimal window. As shown in Tab. I, when
trained with 5x augmentation of the selected window size
(0.5 seconds), SOUNDBOOST achieves the best performance.
Notably, the model is intentionally trained with slight overfit-
ting due to the physical constraints governing UAV behavior
in real-world conditions. A highly generalized model could
potentially violate these constraints, which is undesirable in
practical applications. Despite the lower training MSE, the
testing MSE remains lower than the validation MSE, indicating
that the model is not degrading on truly unseen data.

Model Performance. With the chosen window size (0.5
seconds) and augmented data (5X) to mitigate environmental
impact such as wind, the blue histogram in Fig. 6 illustrates
the strong correlation between the predicted a.’ and the
reading G from the IMU sensor. Specifically, the means of the
differences between the predicted acceleration values and the
one read from the IMU sensor in the three axes are close to 0,
and the standard deviation is relatively low as well, showing
that the model correlates with the IMU measurements well,
with a very low bias and small modeling error.

Frequency Importance. To understand the contribution of
different frequency components to our model’s predictions,
we conducted a counterfactual feature importance analysis
[57]. Specifically, we analyzed the impact of removing key
frequency groups—including aerodynamic frequencies, blade
passing frequencies, mechanical frequencies, and other noise

—— Benign: p = -0.04, 0 = 0.97
-~ Attack: p = 0.05, 0 = 2.81
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Fig. 6: IMU Attack Detection. The acceleration residuals
between predicted acceleration and real readings from IMU
along with the fitted curves for benign (blue and normal curve)
and attack (red and dash curve) cases. Attack shows a different
distribution with a larger standard deviation than benign.

frequencies—and measured how this affected the model’s
MSE. Removing aerodynamic frequencies increases the MSE
to 1.2698 (3.77x), indicating that aerodynamic noise carries the
strongest signal relevant to the model’s ability to predict UAV
accelerations. The increases after removing blade passing and
mechanical frequency groups are relatively small (less than
0.12x), indicating that, while these frequencies contribute to
the model, they are not the dominant features for predictions.
Removing all other frequencies, which represent general envi-
ronmental and ambient noise, results in only a minor change
in MSE (less than 0.05x), suggesting that background noise
has a negligible impact on the model performance.

B. IMU Attack Detection

IMU Biasing Attack Setup. For an IMU biasing attack, given
the constraints of our hardware-attacking device, we opted
to synthesize the attacks by attacking the UAV’s firmware.
Through this approach, we simulated two primary types of
attacks: the accelerometer Denial-of-Service (DoS) attack and
the gyroscope Side-Swing attack [55].

The premise of Side-Swing attacks relies on amplifying the
sensor output in a designated target direction. We simulate a
side swing attack where spoofing of the gyroscope is proved
to be controllable to some extent [55]. To recreate this in
our synthesized setup, we injected a sequence of positive-
biased signals into the sensor output. This attack attempts to
skew the UAV’s interpretation of its orientation and trajectory.
Our synthesized attack is conducted empirically, incrementally
adding small biases for a short time period enough to observe
obvious abnormal flight behaviors but not causing a crash.
The accelerometer DoS attack is simulated by injecting a
sequence of random noise, as control of the accelerometer
cannot be achieved [55]. However, the oscillatory nature of the
injected signal implies that it contributes almost equivalently
to both directions. Although we still observe obvious abnormal
behaviors, the disruption of this attack by nature is not capable
of causing mission failure, which aligns with our threat model.
We conducted 10 hovering flights under IMU biasing attacks,
with 5 flights each for side-swing and DoS attacks. Each
spoofing event lasted 10 seconds while the drone hovered.
Overall, we conducted 20 different flights, 10 normal flights,
and 10 subjected to the synthesized attacks.

Result. In this section, we show RCA detection results
of IMU biasing attacks to demonstrate the effectiveness of
SOUNDBOOST in pinpointing the anomalies in the IMU. We



utilize the audio acceleration predictions obtained from the
previous step of sensory mapping and compare them directly
with the acceleration measurements from the IMU. Our aim is
to detect significant discrepancies between the two sets of data
that may indicate the presence of a spoofing attack. Among the
three models we tested, MobileNetV2 has the best performance
in general to fulfill the requirements.

In benign cases, we typically observe that the accelera-
tion predictions closely align with the IMU measurements,
exhibiting only minor discrepancies that roughly follow a
normal distribution. This underscores the accuracy of our
model in normal operating conditions, instilling confidence in
its reliability for subsequent control analysis. In IMU biasing
attacks from §III-C1, instability in the UAV’s flight is induced
by tampering with the z-axis (downward). We found that
the model predictions and the sensor measurements deviated
significantly during the attack periods, enabling SOUNDBOOST
to easily reject the normal hypothesis. Fig. 6 shows the dis-
tribution of differences between the IMU measured downward
accelerations and the acoustic predicted downward accelera-
tions for an attack dataset along with the normal curve from
a benign case. We also fit a normal curve for the attack
distribution of residuals. As can be seen, the distribution of
the residuals from the attack dataset is significantly different
from the benign distribution, with a large standard deviation
of 2.81, showing the unstable flight behavior from the attack.

SOUNDBOOST is able to identify all the attacks during
poc hoc analysis with an average delay of 2.3 seconds from
the attack onset as observed in the flight log, with one benign
flight showing a false positive. We attribute it to the unstable
flight caused by critically low battery levels, highlighting the
robustness of our detection approach. This result highlights the
and reliability of identifying IMU biasing attacks, contributing
to the overall effectiveness of SOUNDBOOST.

C. GPS Spoofing Attack Detection

GPS Spoofing Attack Setup. For a GPS spoofing attack, we
use an open-sourced tool called GPS-SDR-SIM [54] and a
software-defined radio device (SDR) called HackRF One [16].
We use GPS-SDR-SIM to generate GPS baseband signals by
providing it with the ephemeris data, i.e., the longitude and
latitude of the spoofing location, with the spoofing length.
Then, we use HackRF One to convert the generated baseband
signal into radio frequencies that mimic the GPS satellites.

In the experiments of the GPS spoofing attack, we pro-
grammed the UAV to perform two missions. For the first
mission, we had the UAV hover at a certain location. For the
GPS spoofing attacks, we set the spoofing location of the attack
to be static throughout the attack period. For the first case, we
spoof at a location 10 meters from the UAV; and for the second
case, we spoof the UAV at a location within the mission path.
Overall, we evaluate the accuracy of SOUNDBOOST’s GPS
attack detection component using 30 benign and 19 attack
flight periods. Across the 19 attack periods, each GPS spoofing
period lasts between 60 and 90 seconds.

Failsafe IMU Only Baseline. To establish comprehensive
baseline comparisons, we conduct an ablation study of
SOUNDBOOST considering using only the IMU measurements

TABLE 1II: GPS spoofing attack detection result. The table
summarizes the system inputs, the number of benign and attack
flights tested, the number of alerts reported, and the TPR and
FPR for each detector.

SOUNDBOOST Baselines
System audio audio Failsafe [33] LTI [10] LTI [10] LTI [10] DNN [15]
Inputs only & IMU IMU only yaw VX vy (LSTM)
# Benign
Flights 30 30 30 30 30 30 30
# Alerted 7 2 5 3 0 1 22
# Attack
Flights 19 19 19 19 19 19 19
# Alerted 15 17 11 5 1 1 13
TPR 079  0.89 0.58 0.26 0.05 0.05 0.68
FPR 023  0.10 0.17 0.10 0 0.03 0.73

in KF, the same algorithm inherently adopted by ArduPilot
for failsafe motion estimations [2]. In this baseline model, we
solely rely on the IMU measurements for physics prediction
in KF, similar to the audio only KF of SOUNDBOOST. By
leveraging the UAV’s onboard IMU, which provides informa-
tion about its orientation, acceleration, and angular velocity, we
construct a state-space model for the KF. The IMU acceleration
is used in the prediction step to estimate the UAV’s velocity
based on the first kinematic equation. The fusion algorithm
then updates this velocity estimation with only the IMU mea-
surements and further performs RCA attack detection using
the same algorithm as the Audio Only KF (§III-C1).

Control Invariant (LTI) Baseline. We include the state-of-
the-art Control Invariant method [10] as our baseline. This
method employs System Identification (SI) to construct a linear
time-invariant (LTI) model of the UAV’s kinematic system
from observed data. The LTI system is represented as:

Trr1 = Az + Bug and y, = Cxy.

A, B, and C are matrices that characterize the specific UAV
process. The established LTI model serves as an invariant mon-
itor for attack detection based on a set threshold. The UAV’s
gyroscope and velocity data are used in our implementation.

Deep Neural Network (DNN) Baseline. We also include a
data-driven baseline that uses the LSTM model to approximate
the UAV’s control dynamics [15]. This approach learns the
UAV’s normal control behavior as a time series from benign
flight data and estimates the next control outputs. Any devia-
tion between the predicted and actual control outputs beyond
a learned threshold is flagged as an attack.

Result. Tab. II demonstrates the effectiveness of
SOUNDBOOST in detecting spoofing attacks, showing the
comparisons of various input configurations in SOUNDBOOST
against the baseline systems. For each, it lists the number of
benign and attacked flight periods and the number of alerts
raised during the flight period and calculates the true positive
rate (TPR) and false positive rate (FPR).

When the IMU sensor is flagged as anomalous,
SOUNDBOOST relies solely on audio acceleration predictions
for GPS spoofing detection. It successfully identified 15 out of
the 19 attacks, achieving a true positive rate of 79%. For the
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Fig. 7: Z-axis Position and Velocity Estimation. SOUNDBOOST
position estimation is shown on top. Velocity estimations from
the GPS (blue) and from SOUNDBOOST (orange) are shown
at the bottom. The GPS spoofing period is highlighted in pink.

30 benign flight periods, SOUNDBOOST audio only detector
reports 7 false alarms, resulting in a false positive rate of 29%.
While this false positive may sound high, with IMU being
flagged introduces irregular in flight behaviors, the method
still maintains a good true positive rate in identifying GPS
spoofing attacks. This highlights the value of using acoustic
signatures for GPS spoofing attack RCA and detection while
suggesting that the audio only approach is prone to false posi-
tives, which emphasizes the need to incorporate both acoustic
signature predictions and IMU measurements to improve post
hoc detection accuracy if IMU data is available for use.

When the IMU sensor is confirmed benign, SOUNDBOOST
combines acceleration predictions with IMU measurements,
using a weighted approach of sensor fusion based on the co-
variance matrix to improve the precision of velocity estimates.
audio + IMU outperforms other methods in detection rates,
identifying attacks with higher accuracy and maintaining a
reasonably low false alarm rate. Specifically, of the 19 attacks,
with audio + IMU, SOUNDBOOST successfully detects 17 of
them within the attack period, achieving a true positive rate of
89%. Fig. 7 illustrates the estimated position and velocity from
SOUNDBOOST during a GPS spoofing attack, where the drone
is instructed to execute a hovering mission. Large discrepancies
observed in velocity estimations indicate the effectiveness of
this method. While audio + IMU reports 2 false alarms out of
the 30 benign periods tested, resulting in a false positive rate
of 8%, we attribute these false positives to the UAV’s recovery
attempts from the previous GPS spoofing attack period. When
we label the dataset, we cut the flight into periods of attack
and benign cases, but in reality a benign case usually follows
an attack case. Thus, these false positives are possible to be
minimized with deliberate thresholding.

The runtime overhead of SOUNDBOOST signature gen-
eration is on average of 2.4%. While offline training and
parameter tuning are computationally intensive, they only need
to be performed once for each UAV model. SOUNDBOOST
achieves efficient post hoc detection, identifying GPS spoofing
attacks in an average of 18.1 seconds after attack starts — timely
alerts with high accuracy and low false-positive rates.

Comparisons with Baseline. To underscore the effectiveness
of our GPS spoofing detection methodology, we evaluate our

framework using only acoustic signatures (audio) with and
without IMU measurements against the ablation study baseline
using only IMU data (IMU). We also benchmarked against LTI
control invariant methods that rely on x-axis velocity, y-axis
velocity, and yaw measurements and a DNN-based method that
leverages time series for control signal estimations.

As shown in Tab. II, the baseline approach using IMU
only for detection indicates lower detection rates for attacks
compared to both approaches in SOUNDBOOST. This approach
shows fewer false positives compared to the audio only ap-
proach, with an FPR 0.17 along with a TPR of 0.58, showing
that the detector using only IMU is less sensitive compared to
both of the SOUNDBOOST’s detectors. The control invariant
approaches (yaw, vx, vy) exhibit varying levels of success. Yaw-
based control invariants outperform vx and vy in detection,
with both vx- and vy-based detectors showing low alert rates.
This indicates that the control invariant approaches, especially
the vx- and vy-based detectors, are not very applicable to
real-world attack detection cases. The DNN-based approach
shows a TPR of 0.68, which is higher than the IMU only
and control invariant methods, indicating better sensitivity to
attacks. However, it also has a significantly higher FPR of 0.73
on benign flights, suggesting a lack of specificity that is not
suitable for practical RCA deployment.

This analysis validates the performance of SOUNDBOOST’s
methods using audio only and audio+IMU, highlighting the
effectiveness of the acoustic side-channel in real-world scenar-
ios. The evaluation emphasizes the role of SOUNDBOOST as a
post-incident RCA and attack detection framework, providing
an accurate diagnosis to attribute UAV navigation failures.

D. Adversarial Experiments Against Sound

To evaluate SOUNDBOOST’s robustness in adversarial set-
tings, we leverage two key insights: 1) SOUNDBOOST filters
out acoustic signals beyond aerodynamic frequency group,
making inaudible signals ineffective. 2) Acoustic signal inten-
sity decreases with distance [4], requiring interference to occur
in close proximity. To this end, we conducted two adversarial
experiments: 1) a real-world interference attack using a second
UAV and an off-the-shelf speaker, and 2) a simulated attack
where an adversary manipulates sound phase and amplitude in
an idealized setting.

Real-world Interference. To execute a real-world sound
spoofing attack, the attacker has to interfere with the sound sig-
nals received by a target UAV. We conducted two experiments
to achieve this. First, we use a second spoofing UAV of the
same model to fly at a radius of 2, 1.5, 1, and 0.5 meters around
the hovering UAV, attempting to interfere with SOUNDBOOST
using its own sound. Secondly, we perform record-and-replay
attacks using a portable speaker mounted on the attacking
UAV playing pre-recorded UAV sounds at maximum vol-
ume while maintaining a minimal distance (i.e., 0.5 meters)
avoiding collisions. The results indicate that neither attack
have any measurable effect on SOUNDBOOST ’s acceleration
predictions. FFT analysis revealed that aerodynamic frequency
alterations were negligible. We attribute the failure to the
spoofing sound not phase-synchronized with the UAV’s sound
signal. To better understand the attacks, we further analyzed
the FFT of the audio recorded by a fixed microphone array



TABLE III: SOUNDBOOST audio + IMU under adversarial
phase-synchronized sound attack at the aerodynamic frequen-
cies. The baseline TPR and FPR are 0.89 and 0.1 (Tab. I).

Channels
1 2 3 4
Amplitude TPR FPR TPR FPR TPR FPR TPR FPR

Attacks

0% 0.74 041 074 047 076 056 070 057
Canceling 25% 079 040 076 046 076 048 076  0.57
50% 084 038 0.81 040 078 047 079 043
75% 084 028 084 038 084 038 079 040

125% 079 0.3 064 006 059 006 053 0.07
Amplifying 150% 062 0.08 052 004 045 006 042  0.07
175% 059 0.06 047 004 039 007 037 0.07
200% 0.55 004 042 0.04 038 007 037 007

positioned 0.5 meters from a hovering UAV and compared
it to recordings from the microphone array mounted on the
UAV. The result shows that the maximum magnitude of the
aerodynamic frequency group is approximately 12000 near the
UAV, but drops to 5500 at the microphone array 0.5 meters
away, representing only 46% of the original intensity.

Simulated Interference. Since real-world tools cannot affect
SOUNDBOOST, we simulate interference assuming attackers
have powerful wave emitters targeting individual microphones
in the worst case. This tests the robustness of sound-based
detection. We start by manipulating the amplitudes of the
most important frequencies § IV-A, assuming an adversary
with precise control over phase and amplitude using low-
latency equipment. Specifically, we amplify (125%-200%) or
cancel (75%-0%) aerodynamic frequencies on one to four
microphone channels. Tab. III shows SOUNDBOOST audio
+ IMU detection results (averaged by channel combinations).
Amplifying by a factor of 2 reduces the baseline TPR from
0.89 (Tab. I) to 0.37 on four channels and 0.55 on one. Fully
cancellation only reduces the TPR to 0.70 on four channels
and 0.74 on one. This is likely because cancellation resembles
weaker signals of benign variations, limiting how much the
model can be misled, whereas amplification introduces ab-
normal signals that may violate UAV’s physical constraints.
Amplification reduces both TPR and FPR by skewing error
distribution, making downstream detection more susceptible.
Cancellation increases FPR while keeping TPR high, making
detection overly sensitive but not easily bypassed.

Despite these simulated effects, real-world execution of
this attack is highly impractical. First, precise phase synchro-
nization across moving microphones requires advanced audio
processing and precise control over the propagation of sound
waves. Any phase drift weakens the attack. Second, reflections,
air turbulence, and sound absorption by surrounding objects
further disrupt alignments at all microphones. Third, even if
an attacker succeeds in producing phase-synchronized sounds
to attack all microphones whether using a second drone or
a powerful, portable speaker, our first adversarial experiment
shows that without crashing the target, signal strength at the
target only reaches 46% due to noise diffusion. Thus, effec-
tive amplitudes are limited between 54% (cancellation) and
146% (amplification). At 54% amplitude across all channels,
SOUNDBOOST audio + IMU achieves a TPR of 0.79 and an
FPR of 0.43, comparable to SOUNDBOOST audio only benign
performance. At 146%, SOUNDBOOST audio + IMU performs

slightly worse than Failsafe IMU only benign performance with
a TPR of 0.47, but a better FPR of 0.07.

Our results show that real-world sound spoofing from a
drone fails to impact SOUNDBOOST due to noise diffusion and
lack of phase alignment. Simulated phase-synchronized attacks
can degrade performance but are nearly impossible in practice.
Even in worst-case simulations, SOUNDBOOST remains robust
through increased false positives allowing minimal bypasses.
These results confirm SOUNDBOOST ’s reliability against both
practical and theoretical sound spoofing threats.

V. DISCUSSION
A. Robustness to Concurrent GPS and IMU Spoofing Attacks

First, we highlight that there is no reliable way to launch
simultaneous GPS and IMU spoofing attacks without crashing
the UAV. Although existing research primarily focuses on
single-sensor attacks, concurrent attacks on both sensors would
severely disrupt the UAV’s stability, leading to unpredictable
UAV behavior or crashes. This is supported by the “Rocking
Drone” attack [48], which demonstrated a significant impact
of real-world IMU biasing attack on UAV stability. Thus,
launching simultaneous spoofing attacks on both GPS and
IMU without crashing the UAV is highly challenging, if not
unfeasible. Second, even if concurrent attacks occur and UAV
remains airborne, SOUNDBOOST remains functional. Its IMU
RCA attack detection approach remains unchanged, and GPS
spoofing can still be identified using SOUNDBOOST audio-only
(outlined in §III-C2). This demonstrates that SOUNDBOOST is
capable of performing post-incident RCA and detecting attacks
even under complex, concurrent sensor attack scenarios.

B. Generality of SOUNDBOOST

Unseen Maps or Trajectories. SOUNDBOOST’s model is
trained on a diverse set of flight missions incorporating various
speeds and maneuvers to ensure its generality to unseen
trajectories or maps. By correlating acoustic signatures with
acceleration vectors, SOUNDBOOST RCA capability remains
independent of specific mission plans. This ensures the perfor-
mance of SOUNDBOOST in completely novel environments,
providing reliable RCA across diverse fields.

Ambient Environment. The robustness of SOUNDBOOST ex-
tends to varying ambient environmental conditions. The model
is trained and tested under different scenarios, incorporating
frequency filters for out-of-range noise and data augmentations
for various wind conditions. SOUNDBOOST is tested to be
robust against sound spoofing attacks from the same UAV
model. This ensures that SOUNDBOOST is not only adaptable
but also resilient to environmental factors.

UAV Models. SOUNDBO0OOST’s methodology is designed to be
adaptable to different UAV configurations, including variations
in UAV frames, motors, propellers, and microphone setups.
While the framework is designed to be generalized across
different hardware, it is necessary to retrain the machine
learning model to accommodate the specific acoustic and
vibrational characteristics of each new hardware setup. This
retraining process is crucial for maintaining the accuracy of the
spoofing detection mechanism, ensuring that SOUNDBOOST
remains effective across different hardware setups.



Actuator and Multiple IMUs Attacks. Beyond GPS spoofing
and IMU biasing attacks, SOUNDBOOST generalizes to other
threats as well by learning sound patterns during actuation. It
can detect actuator denial-of-service attacks exploiting block
waveforms on PWM-controlled actuators [13], as the model
predicts near-zero acceleration when actuators stop. However,
SOUNDBOOST fails if an attack fully controls all actuators
— though this is unlikely in a quadcopter, where opposing
motor pairs prevent uniform waveform attacks. Additionally,
SOUNDBOOST can detect attack on UAV with multiple IMUs
as well, but detection thresholds must be learned separately
for different IMU models.

C. Ethical Considerations

All experiments were conducted in a carefully chosen
nonurban location to ensure safety and compliance. The GPS
spoofing device (HackRF One) operated at a minimal transmis-
sion power of 5 dBm, limiting its range to a small, controlled
radius of 29.2 m. Locations were selected to be isolated,
located over 15 times the transmission radius away from
critical human activity areas. Additionally, all flights were
FA A-authorized and conducted within controlled airspace at or
below 400 ft, adhering to legal, safety, and ethical guidelines.

VI. RELATED WORK

The widespread use of UAVs has raised significant secu-
rity concerns spanning cyber and physical dimensions. Cyber
attacks can compromise communication, control systems, and
data integrity, resulting in unauthorized access or information
leaks [20], [22], [23], [27], [35]. Physical attacks disrupt oper-
ations through interference, sensor manipulation, or hardware
tampering [9], [13], [28]. Studies highlight the feasibility and
consequences of such attacks [10], [34], [40], [45], emphasiz-
ing the need for robust defenses.

UAV Sensor Spoofing Attacks. Sensor spoofing, especially
GPS spoofing and IMU biasing attacks, poses critical risks
to the UAVs [12], [37], [48]. GPS spoofing exploits vulner-
abilities in unauthenticated signals', enabling UAV seamless
takeovers [38] and real-time control in a Human-in-the-Loop
manner [45]. IMU biasing attacks use out-of-band signals like
high-frequency sound to interfere with or manipulate gyro-
scopes and accelerometers, injecting false data [48], [53], [55].
Other attacks exploit physical feedback [56] or electromagnetic
channels [17], further highlighting sensor vulnerabilities.

Sensor Spoofing Detection. Various mechanisms have been
developed aim to detect sensor spoofing. Control-invariant
frameworks build physical models to monitor deviations [10],
and have been extended with non-linear invariants for greater
robustness [40]. Data-driven models use time-series pat-
terns [11], [15] or safety-critical variables [39] to flag control
anomalies. Hardware-based defenses include spoofing-resistant
GPS receivers that employ advanced signal processing [42] or
data fusion [44], [47] and an Angle-of-Arrival method using
satellite constellations [29] to validate GPS signal legitimacy.
For IMU biasing attacks, a recovery technique based on
denoising has been proposed, establishing the first testbed
for such attacks and providing a method to mitigate signal

1Tt is well-known that GPS signal is unauthenticated.

injection impacts [19]. Despite these advances, most defenses
rely on specific attack assumptions. They often lack resilience
to unknown attacks or the ability to identify compromised sen-
sors. Additionally, GPS spoofing defenses often lack validation
in real world. And few methods conduct post-incident RCA
after UAV has experienced a mission failure. By addressing
these limitations, our framework demonstrates improved ef-
fectiveness in both scenarios.

Cyber-Physical Defenses via Acoustic Side-Channel. The
use of acoustic side-channels for defense has been explored
in prior research. The acoustic side-channel is used for UAV
model identification [26], authentication [14], [41], [59] and
fault detection and isolation [6], [21]. These studies demon-
strate the acoustic side-channel’s effectiveness in monitoring
UAV operational status. In broader CPS domains, researchers
have reverse-engineered 3D printer outputs using microphone
and IMU recordings [1], [5], [49], showing the side-channel’s
diagnostic value. Building on these foundational studies,
our work uses the acoustic side-channel for post-incidence
RCA and sensor attack detections to secure UAV operations.
SOUNDBOOST ’s novelty lies in leveraging acoustic side-
channel to enable post hoc diagnosis, offering forensic insight
into failures even after real-time defenses may have failed.

VII. CONCLUSION

We present SOUNDBOOST, a novel framework that lever-
ages the acoustic side-channel of UAVs to conduct root cause
analysis and detect sensor spoofing attacks targeting UAV
navigation systems. We demonstrate that the acoustic side-
channel has a strong correlation with the acceleration vectors
of the UAV and is robust for post hoc sensor spoofing attack
RCA. Unlike previous works, we evaluate SOUNDBOOST with
real-world flights. We collect the first audio dataset of the UAV
under real-world GPS spoofing. These extensive real-world
experiments demonstrate that SOUNDBOOST achieved a 100%
attack detection rate for IMU biasing attacks, which is the first
work to detect IMU sensor attacks, and 79% GPS spoofing
attack detection rate using acoustic signatures only and 89%
with additional trusted IMU measurement, outperforming the
state-of-the-art baselines by over 21%.
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