

SIGMATA: Storage Integrity Guaranteeing Mechanism against Tampering Attempts for Video Event Data Recorders

The 7th International Multi-Conference on Complexity, Informatics and Cybernatics: IMCIC 2016

Authors: Hyuckmin Kwon, Seulbae Kim, and Heejo Lee

Mar 04, 2016 Presenter: Seulbae Kim

Background

- VEDR (Video Event Data Recorder)
 - Devices that are installed in a vehicle to record the view through the windshield.
 - The recorded video streams are saved to storage as files.
 - Also known as a dashcam or a car black-box.

Motivation

LIBERTAS JUSTITIA VERITAS

- The video data taken from VEDRs constitute the most important evidence in the investigation of an accident or crime.
- The owners can **manipulate unfavorable scenes** after accidents or crimes to conceal their recorded behavior.
 - Insert, delete, replace, or reorder the frames.
- Thus, we need to guarantee "frame-wise integrity" of VEDR storages, which means the preservation of the
 - Existence
 - Time information
 - Chronological relationship

of all recorded frames.

Problem Definition

LIBERTAS JUSTITIA VERITAS

• Detecting **frame-wise forgery** in a VEDR file.

- Frame-wise forgery: the action of modifying the bytesequence of video frames or reordering their temporal sequence.
- Four types of such forgery:
 - Insertion
 - Deletion
 - Replacement
 - Reordering

Assumption

LIBERTAS JUSTITIA VERITAS

• VEDR has a **restricted** operating environment.

- 1. Chronological file I/O.
 - The video files of a VEDR are created and stored in chronological sequence.
- 2. Isolated device.
 - VEDRs do not support any networking features.
 - Thus, we cannot utilize a remote server to verify integrity.
- 3. Open access.
 - The entire body of the VEDR is in the hands of the users, who are simultaneously the adversaries.
 - The adversaries have full access to our underlying technique.

Proposed Mechanism: SIGMATA

LIBERTAS JUSTITIA VERITAS Overall structure

- 1. IAV Generator
 - In charge of storing the chronological order of frames.
 - Runs during the recording of the video, up to 24 hours a day.
 - Generates integrity assurance values (IAVs) by processing each frame, and saves them in the storage.
- 2. Integrity Checker
 - Exists independently with the VEDR.
 - Takes advantage of the formerly generated values when it is required, e.g. investigation of a car accident.

- Produces IAVs while the VEDR is recording the video.
- Three steps:
 - 1. Frame preprocessing
 - 2. Salted hashing
 - 3. Storage of the computed IAVs

LIBERTAS JUSTITIA VERITAS

- Frame preprocessing
 - Receive a video frame (fr_i) from the VEDR.
 - Then add the size of the previous frame (fr_{i-1}) .
 - The resulting value is called "augmented frame."
 - e.g. i^{th} augmented frame is $(fr_i + sizeof(fr_{i-1}))$

Security Laboratory

- LIBERTAS JUSTITIA VERITAS
- Salted hashing
 - Create a salt.
 - Generate a one-way hash chain of length n, by repeatedly applying a hash function $h_1(x)$ to the elements.

Security Laborator

- Apply another hash function $h_2(x)$ to each element of the chain.
- Append the salt to each augmented frame.

- Storage of the computed IAVs
 - Each video frame is transformed into an IAV.
 - Save the consecutive IAVs of the frames in the video storage.

SIGMATA - IAV Checker

- Integrity examination
 - Performs a comparison of two IAV sequences to verify the integrity of frames on the occasion of investigation.

Evaluation

LIBERTAS JUSTITIA VERITAS

- Attack-suppression scenarios
 - Insertion, deletion, replacement, reordering.
- Security analysis
 - Generation of fake IAVs.
- Feature comparison
 - Comparison with prior works.
- Performance
 - Comparison of encoding time with or without SIGMATA.

Korea University College of Information and Communications

- Detection of frame insertion
 - Baseline
 - Set $B = \{IAV_1, IAV_2, IAV_3, IAV_4, IAV_5, IAV_6\}$
 - Insertion Attack
 - Set $I = \{IAV_1, IAV_2, IAV_x, IAV_3, IAV_4, IAV_5, IAV_6\}$
 - Previously unseen value is inserted.

- Detection of frame deletion
 - Baseline
 - Set $B = \{IAV_1, IAV_2, IAV_3, IAV_4, IAV_5, IAV_6\}$
 - Deletion attack
 - $Set D = \{IAV_1, IAV_2, IAV_4, IAV_5, IAV_6\}$
 - IAV_4 is changed to IAV'_4

- Detection of frame replacement
 - Baseline
 - $Set B = \{IAV_1, IAV_2, IAV_3, IAV_4, IAV_5, IAV_6\}$
 - Replacement attack
 - $Set RP = \{IAV_1, IAV_2, IAV_x, IAV_4, IAV_5, IAV_6\}$
 - IAV_3 is missing but the number of IAVs is unchanged.

- LIBERTAS JUSTITIA VERITAS
- Detection of frame reordering
 - Baseline
 - $Set B = \{IAV_1, IAV_2, IAV_3, IAV_4, IAV_5, IAV_6\}$
 - Reordering attack
 - $Set RO = \{IAV_1, IAV_2, IAV_4, IAV_3, IAV_5, IAV_6\}$
 - Supplementary inspection is done to distinguish from replacement attacks.

Evaluation - Security analysis

- Assumption: The adversary has a thorough knowledge of the mechanism.
- Generation of fake IAV
 - By deliberately taking advantage of a hash collision to generate the same IAV as the baseline.
 - Three constraints:
 - 1. Finding the value that causes a hash collision.
 - 2. Forged frame's size must be of the same size as the original frame.
 - 3. The forged frame must be visually valid.
 - Claim: Such an attack is impractical.

Evaluation - Feature comparison

LIBERTAS JUSTITIA VERITAS

Comparison of 8 features

Feature	NCryptFS	Cao et al.	ICAR	SIGMATA	
Detection of frame-wise insertion	No	No	No	Yes	
Detection of frame-wise deletion	No	No	No	Yes	
Detection of frame-wise replacement	No	No	No	Yes	
Detection of frame-wise reordering	No	No	No	Yes	
Data recovery	No	No	Yes	No	
Storage Reusability	Yes	Yes	No	Yes	
Network connection required	No	Yes	No	No	
Implementation layer	Kernel	Application (server-client)	Kernel	Application (Codec)	

Evaluation - Performance

- Experimental setup
 - Raspberry Pi 2
 - 900 MHz quad-core ARM cortex-A7 CPU
 - 1 GB RAM
 - Implementation
 - Modified the FFmpeg encoder. (<u>https://www.ffmpeg.org/</u>)
- Experiment method
 - Used three raw video streams recorded by a VEDR
 - Resolution of 1280 x 720
 - 30 Frames per second
 - 60, 120, 180 seconds long.
 - Compared the encoding time of a raw video stream
 - Without SIGMATA
 - With SIGMATA

Evaluation - Performance

LIBERTAS JUSTITIA VERITAS

• Experiment procedure

- 1. Decoded the videos to get the raw video stream in YUV format.
- 2. Encoded the raw video twice.
 - Once by the unmodified FFmpeg.
 - Once by the FFmpeg in which SIGMATA was implemented.
- 3. Preset: 30 FPS, 4:2:0 subsampling, ultrafast mode.

Evaluation - Performance

LIBERTAS JUSTITIA VERITAS

Result

							0.09				
Video	Vide	eo 1	Vide	20 2	Video 3		0.08				
No. of frames		1,800	3,600		5,400		0.03				
Frames per second	30		30			30 30 30 30 30 30 30 30					
Length (sec)	60		120		180		40.0 Frame				
SIGMATA applied	No	Yes	No	Yes	No	Yes	Ave 0.03 ue be 0.02				
Encoding time (sec)	149.30	150.33	293.39	297.84	428.58	436.69	• = 0.01				
Avg. encoding time/frame	0.0829	0.0835	0.0815	0.0827	0.0794	0.0807	■ FFmpeg ■ FFmpeg+	1800 SIGMATA	3600 No. of frames	5400	

• An average computational overhead of 1.26 % for each frame.

Discussion

LIBERTAS JUSTITIA VERITAS

• Forgery of the first frame

- The first frame of the video stream is directly hashed without adding the size of the previous frame, since such a frame does not exist.
 - This may amplify the likelihood of forgery.
- However, the first frame occupies a small portion, 0.033 sec, of the entire video stream spanning 24 hours.
 - This weakness is negligible.

Discussion

- The use of a user-inaccessible storage
 - We assume the existence of a secure storage
 - Not accessible by users.
 - e.g., Trusted Platform Module (TPM).
 - General VEDRs are ready to utilize such hardware
 - ARMv6 architecture has supported TrustZone since 2001.
 - ARM is the most widespread architectures for embedded processors.
 - For devices that have no such hardware
 - Commercial TPM chips for embedded devices are available.
 - Atmel AT97SC3203S.

Conclusion

- Proposed a novel concept of frame-wise forgery in VEDR storage and a mechanism named SIGMATA to assure its integrity.
- Solved several problems, including the detection of insertion, deletion, replacement, and reordering of frames.
- Verified the utility of SIGMATA by investigating attack scenarios and conducting a security analysis of the possibility of bypassing SIGMATA.
- Evaluated its performance under Raspberry Pi 2 environment and verified that SIGMATA is applicable to the real-time scenario.

