

### SOUNDBOOST: Effective RCA and Attack Detection for UAV via Acoustic Side-Channel

Haoran Wang\*, Zheng Yang\*, Sangdon Park<sup>^</sup>, Yibin Yang<sup>\*</sup>, Seulbae Kim<sup>^</sup>, Willian Lunardi<sup>°</sup>, Martin Andreoni<sup>°</sup>, Taesoo Kim<sup>\*</sup>, Wenke Lee<sup>\*</sup>







### **Motivation and Background**

- UAV applications: surveillance, delivery, mapping, entertainment
- Dependence on critical sensors: GPS and IMU
- Increasing threats: GPS spoofing and IMU biasing attacks
- Difficulty in distinguishing compromised sensors under conflicting reports
- Current solutions lack effective root cause analysis.



# **Key Challenges**

- Can acoustic signals effectively correlate with UAV kinematics?
- How to reliably identify which sensor (GPS or IMU) is compromised?
- How to accurately identify simultaneous attacks?
- Can acoustic analysis remain robust under adversarial sound spoofing attacks?



### **Threat Model and Assumptions**

- Adversary capabilities:
  - Can spoof either GPS or IMU sensors or both
  - Has full knowledge of UAV flight status
- Attack goals:
  - Cause mission failure by misleading the UAV without crashing it
  - Evade detection by avoiding obviously anomalous sensor values
- System assumptions:
  - Acoustic channel is unforgeable due to physical and operational constraints
  - UAV control loop remains closed-loop and acoustic signal remains observable
  - Adversary cannot arbitrarily manipulate microphone input or motor acoustics



### SOUNDBOOST Overview

- Utilizing acoustic side-channel for robust RCA
- Post-incident diagnosis with integrated machine learning and sensor fusion
- Workflow:
  - A. Acoustic Signature Generation
  - B. Deep Learning-based acoustickinematics correlations

C. Post-hoc RCA:

- 1. IMU Attack Detection
- 2. GPS Attack Detection





### **Acoustic Signature Generation**

- FFT analysis of drone motor sounds
- Identifying key frequencies:
  - Aerodynamic: around 5500 Hz
  - Mechanical: around 2500 Hz
  - Blade-passing: around 200 Hz



 Insights: Amplitude of sound provides clear patterns indicating drone acceleration states (hovering, decelerating, accelerating)





### **Kinematics Correlations**

- Deep learning-based correlation of acoustic signatures with UAV acceleration vectors
- Model selection and training: MobileNetV2
- Choosing optimal time window
- Data augmentation techniques to handle environmental variability



### **Post-Hoc Two-Layer RCA**

- Stage 1: IMU Attack Detection (statistical anomaly detection)
- Stage 2: GPS Attack Detection (Kalman filter-based sensor fusion)
- Workflow:
  - Acoustic signature prediction
  - Residual analysis against IMU measurements
  - IMU integrity decision
  - GPS spoofing detection based on velocity discrepancies





### IMU Attack Detection

- Residual distribution analysis
- Statistical detection using Kolmogorov-Smirnov test





### **GPS Attack Detection**

- Kalman filter-based sensor fusion with two versions:
  - Audio Only KF: Used when IMU is compromised; relies solely on acoustic-based acceleration predictions for velocity estimation.
  - Audio + IMU KF: Used when IMU is trustworthy; combines IMU measurements with acoustic predictions for weighted sensor fusion.





### GPS Attack Detection

• Detection achieved through velocity discrepancy analysis between GPS-reported and KF predicted velocities





### Implementation

- Hardware:
  - Holybro X500 Quadcopter with PX4 autopilot
  - Raspberry Pi
  - ReSpeaker microphone array strategically positioned off-center on the UAV's frame
- Data collection:
  - Outdoor UAV flights under varying environmental conditions
  - Designed flight missions with diverse maneuvers for model generalization



### **Attack Setup**

#### • IMU biasing attacks:

- Synthetic accelerometer DoS attack
- Synthetic gyroscope Side-Swing attack
- GPS spoofing attacks:
  - Physical GPS spoofing attack
  - SDR device called HackRF One
  - An open-source signal generation tool called GPS-SDR-SIM



### **Evaluation: IMU Attack Detection**

- Attack detection
  - True positive rate: 100%
  - False positive rates: 10%
- Insights: High accuracy demonstrates robustness and reliability of acousticbased statistical anomaly detection on IMU attacks



# **Evaluation: GPS Spoofing Attack Detection**

|                     | SOUNDBOOST       |                | Baselines                 |                 |                |                |                    |  |  |
|---------------------|------------------|----------------|---------------------------|-----------------|----------------|----------------|--------------------|--|--|
| System<br>Inputs    | audio<br>only    | audio<br>& IMU | Failsafe [33]<br>IMU only | LTI [10]<br>yaw | LTI [10]<br>vx | LTI [10]<br>vy | DNN [15]<br>(LSTM) |  |  |
| # Benign<br>Flights | 30               | 30             | 30                        | 30              | 30             | 30             | 30                 |  |  |
| # Alerted           | 7                | 2              | 5                         | 3               | 0              | 1              | 22                 |  |  |
| # Attack<br>Flights | 19               | 19             | 19                        | 19              | 19             | 19             | 19                 |  |  |
| # Alerted           | 15               | 17             | 11                        | 5               | 1              | 1              | 13                 |  |  |
| TPR<br>FPR          | <b>0.79</b> 0.23 | 0.89<br>0.10   | 0.58<br>0.17              | 0.26<br>0.10    | 0.05<br>0      | 0.05<br>0.03   | 0.68<br>0.73       |  |  |

- Accuracy:
  - 89% (Audio + IMU), 79% (Audio Only)
- False positive rates:
  - 10% (Audio + IMU), 23% (Audio Only)
- Baseline comparison:
  - Outperforms traditional GPS spoofing detection methods significantly
- Insights:
  - Both version surpass the SOTA performance
  - Inclusion of trusted IMU data improves detection accuracy, highlighting the importance of multi-modal sensor fusion



### **Adversarial Robustness**

|            |                              | Channels                     |                              |                              |                              |                              |                              |                              |                              |  |  |
|------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|
|            |                              | 1                            |                              | 2                            |                              | 3                            |                              | 4                            |                              |  |  |
| Attacks    | Amplitude                    | TPR                          | FPR                          | TPR                          | FPR                          | TPR                          | FPR                          | TPR                          | FPR                          |  |  |
| Canceling  | 0%<br>25%<br>50%<br>75%      | 0.74<br>0.79<br>0.84<br>0.84 | 0.41<br>0.40<br>0.38<br>0.28 | 0.74<br>0.76<br>0.81<br>0.84 | 0.47<br>0.46<br>0.40<br>0.38 | 0.76<br>0.76<br>0.78<br>0.84 | 0.56<br>0.48<br>0.47<br>0.38 | 0.70<br>0.76<br>0.79<br>0.79 | 0.57<br>0.57<br>0.43<br>0.40 |  |  |
| Amplifying | 125%<br>150%<br>175%<br>200% | 0.79<br>0.62<br>0.59<br>0.55 | 0.13<br>0.08<br>0.06<br>0.04 | 0.64<br>0.52<br>0.47<br>0.42 | 0.06<br>0.04<br>0.04<br>0.04 | 0.59<br>0.45<br>0.39<br>0.38 | 0.06<br>0.06<br>0.07<br>0.07 | 0.53<br>0.42<br>0.37<br>0.37 | 0.07<br>0.07<br>0.07<br>0.07 |  |  |

\*The baseline TPR and FPR are 0.89 and 0.1.

- Real-world record-and-replay attacks
  - Fail to cause measurable effects on acceleration predictions
  - Insight: Real-world spoofing sounds fail to phasesynchronize with UAV acoustic signals

#### • Simulated phase synchronization attacks

- Canceling (0%): reduces the TPR to 0.7 on 4 channels and 0.74 on 1 channel
- Amplifying (200%): reduces the TPR to 0.37 on 4 channels and 0.55 on 1 channel
- Insights: Amplification makes downstream detection more susceptible, while cancellation make detection overly sensitive but not easily bypassed
- Attacker's Limitations
  - Precise synchronization requirement difficult to achieve practically
  - Acoustic power and range significantly limit attacker
    effectiveness



### Conclusion

- Acoustic side-channel as reliable source for UAV root cause analysis
- Effective detection of both GPS and IMU spoofing attacks
- Demonstrated adversarial robustness in both real-world and simulated attacks







